An Efficient Method for Discerning Climate-Relevant Sensitivities in AGCMs

Hui Wan, Phil Rasch, Kai Zhang, Yun Qian, Huiping Yan, Chun Zhao
Pacific Northwest National Laboratory
(Hui.Wan@pnnl.gov)

Thanks to Maoyi Huang, Qing Yang, Steve Ghan (PNNL), Cecile Hannay (NCAR) and the SciDAC Multiscale team for suggestions and technical help
We’re interested in time step sensitivities and convergence properties in CAM5 AMIP simulations need multiple years/decades to overcome natural variability Model with small time step is expensive to integrate ⇒ Need an alternative experimentation strategy

Our idea
Replace serial-in-time long-term climate simulations by representative ensembles of shorter runs

Utility of the method goes far beyond time step sensitivity An uncertainty quantification (UQ) example is shown later Very useful in efficient model tuning and sensitivity analysis, especially for high-resolution models
Comparison with CAPT

Similarities

- Both exploit the important role of fast processes in determining model sensitivities/uncertainties

Differences

- Model biases v.s. sensitivities as focus
- In this study we are interested in parametric and structural sensitivities close to the model’s equilibrium state

We are trying to make use of the scientific basis of CAPT in more general ways
Evaluation Example (1): Time Step Sensitivity

- **Reference simulations**
 - 1+5-yr simulations, 2 degree FV dycore
 - 30-minute and 4-minute time step
 - 5-yr mean DJF differences in clouds and precipitation

- **Ensemble simulations**
 - 50 members
 - Initial conditions sampled from DJF of a previously performed 20-yr simulation
 - 30-minute and 4-minute ensembles use the same set of initial conditions

- Compare 5-yr winter averages with 1-day 50-member ensemble averages
Global Mean Total Cloud Cover (%)
Some Other Fields

Liquid Water Path (g m\(^{-2}\))

Ice Water Path (g m\(^{-2}\))

Shortwave Cloud Forcing (W m\(^{-2}\))

Longwave Cloud Forcing (W m\(^{-2}\))
Geographical Distribution

Total Cloud Cover Difference (%)
4-minute minus 30-minute time step

5-yr DJF Average

Stippling in the right panel indicates differences significant at the 95% confidence level according to the local t-test.
\(\Delta \) Cloud Ice

4-minute minus 30-minute time step

Stippling in the right panel indicates differences significant at the 95% confidence level according to the local t-test.
Summary of Example (1)

Effectiveness

- Ensembles of 20 to 50 three-day simulations are sufficient for clouds and precipitation
- The method can detect global mean differences AND identify climate regimes
- Ensembles can be combined with nudging to help understand the role of physics-dynamics interaction (not shown here)

Computational efficiency

- 50 x 3-day simulations v.s. 1+5-yr climate run
- **Total CPU time**: 150 v.s. 2190 days, a factor of 15
- **Throughput time**: 20 minutes v.s. 4-7 days on Yellowstone, a factor of several hundred
- Contrast can be even stronger for certain variables and domain averages
Evaluation Example (2): Uncertainty Quantification

- Zhao et al. (2013, doi:10.5194/acp-13-10969-2013)
 - Parametric sensitivity of TOA radiative balance
 - Perturbed 16 empirical parameters in CAM5
 - Quasi-Monte Carlo sampling, 256 simulations, 1+4-yr AMIP

- Our ensemble experiments
 - Same 256 parameter combinations
 - 12 ensemble members representing 12 months of a year

- Compare 4-yr averages with 1-day 12-member averages
Spin-up Time

- 11 out of 16 parameters directly affect aerosols (e.g., tuning factors for emissions)
- Global mean aerosol life cycle is ~4 days in CAM5-MAM3 (Liu et al., 2012, GMD)
- Expect longer spin-up than in the 1st example

Day-10 averages are used in figures shown on the next slides
Global Mean TOA Net Radiative Flux (FNET)

- Sensitivity of FNET to individual parameters
Cloud Forcing

Black: 4-yr mean; Blue: 12-member ensemble average at day 10

Shortwave Cloud Forcing

Longwave Cloud Forcing
Summary of Example (2)

Effectiveness

- Short ensembles correctly reproduces parametric sensitivities of the TOA radiative budget

Computational efficiency

- 12 x10-day simulations v.s. 1+4-yr AMIP run
- **Total CPU time:** 120 v.s. 1825 days, a factor of 15
- **Throughput time:** 12 x 256 simulations finished overnight on Yellowstone
- If more nodes had been available to allow 3000+ simulations to run simultaneously, the entire ensemble UQ experiment could have been completed within 15 minutes!
The ensemble method

- Exploits the fact that **fast processes** are an important source of model sensitivities and uncertainties
- Is very **effective** and **efficient**
- Does not address slow modes or slow feedbacks, but
- Can provide a first-order assessment of model sensitivity at substantially reduced computational cost
- Can be very useful for speeding up investigations, especially for expensive models/studies

We plan to test and use the ensemble strategy in other applications
(e.g., aerosol lifecycle and climate effects)