Navigating CAM5 physics in WACCM

Mike Mills
WACCM Liaison

Whole Atmosphere Working Group Meeting
Monday, February 11, 2013

- CAM5 Physics
 - RRTMG radiative scheme
 - Boundary layer scheme
 - Shallow convection scheme
 - Cloud macrophysics & microphysics
 - Modal aerosol module (MAM)

- CARMA microphysics
- Spectral element
- Thanks to Andrew Conley, Chuck Bardeen, Sean Santos, Dan Marsh, David Williamson, Sungsu Park, Pengfei Yu, Francis Vitt, Hanli Liu
RRTMG Radiative Scheme

- Merging with upper atmosphere (MLT) radiative scheme
- SW merge zone moved slightly downward based on overlapping heating rates

Courtesy Andrew Conley, WAWG, Feb 2011
RRTMG Radiative Scheme

- Merging with upper atmosphere (MLT) radiative scheme
 - LW merge zone moved slightly downward based on overlapping cooling rates

Courtesy Andrew Conley, WAWG, Feb 2011
RRTMG Radiative Scheme

- Bug found in RRTMG that affected only WACCM
 - levels were misaligned for SW calculations with aerosols
 - produced anomalously high surface winds, dust, and temperatures
 - 45% increase in global average dust AOD
 - Bug fixed (November 2012)

July averages over 20-year runs at 32.5°E, 25.5°N

Dust mobilization flux (kg m$^{-2}$ s$^{-1}$)

WACCM5 with bug

CAM5
UW Boundary Layer Scheme

- Scheme extends through entire model domain
- Produces spikes in eddy diffusion coefficient (KVH) in the stratosphere
- Bug in WACCM molecular diffusion scheme produced spikes in some species when KVH spikes corresponded to a particular level (~55 km)
 - Bug fixed
- Impact of KVH spikes on gravity waves, stratospheric dynamics unclear
- Limiters on BL length scale implemented above 100 hPa to reduce the magnitude of KVH spikes
UW Shallow Convection Scheme

- Bug: fixer in fluxbelowinv avoids division by zero by creating a minimum flux across the BL of 1×10^{-13} mol/mol/s
- Assumption based on CAM aerosols that no tracer would have a mixing ratio smaller than 1×10^{-12} mol/mol
- WACCM has many chemical species with much smaller mixing ratios
- Scheme produced at the surface, ion species that should only be in the upper atmosphere at $\sim 1 \times 10^{-19}$ mol/mol
- Highly reactive ions decimated OH
- Bug fixed: May 2012
Clouds and Aerosols

- Consistent upper level limit, trop_cloud_top_lev, instituted on:
 - Cloud macrophysics (Park)
 - Cloud microphysics (Morrison-Gettelman)
 - Modal aerosol module (MAM)
- namelist parameter, trop_cloud_top_pres, set to 10 Pa = 0.1 hPa
- MAM species advected passively above upper limit
- WACCM5 run with MAM3 for 25 years
 - 1 crash in year 14:
 - Courant (CFL) condition violation in level 7
 - increased nsplit from 8 to 10 for 1 month to reduce dynamical timestep, got through crash
- WACCM5 ready for use with prognostic MAM3 in CESM1.2 release, May 2013
- Prescribed MAM? Rasch update tomorrow at 9:15AM
CFL investigation

• 10-year RMS of 10-day instantaneous zonal wind anomaly from the zonal mean
• Crash occurred at level 7
• RMS plots look remarkably similar at each level between WACCM4 and WACCM5
• Levels 7, 8, & 9 do have some noticeably higher RMS regions over Asia, the Pacific, and Europe.
WACCM5-MAM3 for stratospheric sulfate

- GeoMIP: Geoengineering Model Intercomparison Project
- G3 & G4 experiments to offset anthropogenic RF with stratospheric sulfates
- Can MAM3 + RRTMG be used for stratospheric sulfates?
 - add OCS to chemistry for source of stratospheric sulfur
 - create SO$_2$ external forcing file with stratospheric levels to simulate geoengineering
- Would MAM7 be better?
- Can we use MAM consistently for volcanic forcing in CAM5 and WACCM5?
Development: CARMA microphysics

- WACCM4-CARMA used to study one or more types of aerosols with detailed bin microphysics
 - models: black carbon, cirrus, dust, meteor smoke, PMCs, sea salt, sulfate
 - non-CARMA aerosols treated with default prescribed bulk
- MAM treats aerosols as internal mixtures of all aerosol types
- Single aerosol types are not easily replaced with CARMA
- Strategy: replace all MAM aerosols with CARMA bins for detailed aerosol studies
- Pengfei Yu (CU) has developed CAM5-CARMA with bins for
 1. internal mixture of organics, BC, sulfate, sea salt, dust
 2. sulfate

![Diagram of aerosol types and processes]
Spectral Element (HOMME dycore)

- WACCM4 has been run with cubed sphere spectral element (SE) dycore with specified chemistry (SC)
 - Model interpolates SC data file from FV to SE
 - Validated against FV-SC run
 - To be included in CESM1.2 release, May 2013
- Vertical advection for SE to be updated in CESM1.2
 - Effects on WACCM-SE to be tested
- Conservative Semi-Lagrangian Advection for Models (CSLAM) being developed for full chemistry
 - Cost of advection independent of number of tracers
 - Peter Lauritzen will give CSLAM update at AMWG, Tuesday 9AM
Navigating CAM5 physics in WACCM

Mike Mills
WACCM Liaison

Whole Atmosphere Working Group Meeting
Monday, February 11, 2013

• CAM5 Physics
 • RRTMG radiative scheme
 • Boundary layer scheme
 • Shallow convection scheme
 • Cloud macrophysics & microphysics
 • Modal aerosol module (MAM)

• CARMA microphysics
 • Spectral element
 • Thanks to Andrew Conley, Chuck Bardeen, Sean Santos, Dan Marsh, David Williamson, Sungsu Park, Pengfei Yu, Francis Vitt, Hanli Liu