The implications of differences in stomatal conductance model parameters on estimates of ecosystem-atmosphere energy exchange

Bill Bauerle, Dave Barnard, Grace Lloyd, Alex Daniels, Dan Banks, Gretchen Reuning, & Brianna Miles

Colorado State University
MAESTRA

Energy balance and light dissipation

Farquhar von Caemerrer (A_n)

Ball-Berry-Leuning (g_s)

Penman-Monteith (evapotranspiration)

Background on models
Sensitivity analyses
Understanding g_0
Understanding g_1
Conclusions

Sub-model \((g_s) \)

\[
g_s = g_0 + \frac{g_1 A_n}{(C_s - \Gamma) \left(1 + \frac{D_s}{D_0}\right)}
\]

e.g. Ball-Berry \(g_s \) model as modified by Leuning (1995)
Transpiration estimate parameter sensitivity

Background on models

Sensitivity analyses

Understanding g_0

Understanding g_1

Conclusions

$g_0 = \text{minimum stomatal conductance}$

$g_1 = \text{marginal water cost per unit carbon gain}$

$\alpha = \text{quantum yield of electron transport}$

$V_{cmax} = \text{the maximum carboxylation rate of Rubisco}$

Barnard & Bauerle, in review
Background on models

Sensitivity analyses

Understanding g_0

Understanding g_1

Conclusions

Intraspecific C_3

Bauerle et al., in review
Parameter interactions with environment

Background on models

Sensitivity analyses

Understanding g_0

Understanding g_1

Conclusions

Bauerle et al., in review
Parameter importance changes with environment

Background on models

Sensitivity analyses

Understanding g_0

Understanding g_1

Conclusions

Bauerle et al., in review
Parameter effect increases with canopy depth

Background on models
Sensitivity analyses
Understanding g_0
Understanding g_1
Conclusions

Barnard & Bauerle, in review
Sub-models \((g_s) \)

\[\sum g_s = g_0 + g_1 A_n \left(C_s - \Gamma \right) \left(1 + \frac{D_s}{D_0} \right) \]

Ball-Berry \(g_s \) model as modified by Leuning (1995)
Light dependence of g_0

Absorbed PAR (μmol m$^{-2}$ s$^{-1}$)

Contribution to Σg_s (%)
Error propagation of g_0 parameter fit

Background on models
Sensitivity analyses
Understanding g_0
Understanding g_1
Conclusions

Barnard & Bauerle, in review
g_0 estimate error

Background on models

Sensitivity analyses

Understanding g_0

Understanding g_1

Conclusions

Measured transpiration (kg m\(^{-2}\) s\(^{-1}\))

Modeled transpiration (kg m\(^{-2}\) s\(^{-1}\))

- Obs. g_0
- LSF g_0

Barnard & Bauerle, in review
g_1 – differences among index

Background on models

Sensitivity analyses

Understanding g_0

Understanding g_1

Conclusions

Ball
Coefficients
$b[0]$ -0.0159
$b[1]$ 7.92
r^2 0.97

Leuning
Coefficients
$b[0]$ -0.0310
$b[1]$ 8.96
r^2 0.97

Medlyn
Coefficients
$b[0]$ -0.0299
$b[1]$ 5.53
r^2 0.97

Lloyd et al., in review
Water stress response

Background on models

Sensitivity analyses

Understanding g_0

Understanding g_1

Conclusions

Lloyd et al., in review
g_1 – Time and water stress response

Lloyd et al., in review
Water stress response

Background on models

Sensitivity analyses

Understanding g_0

Understanding g_1

Conclusions
Conclusions

- g_0 is the parameter with highest influence on transpiration estimates (in 3-dimensions)
- The g_0 parameters importance changes with environmental conditions
- The magnitude of the g_0 parameter is indirectly proportional to absorbed light
- Using measured g_0 gave better model estimates than linear estimates
Conclusions

- g_1 is the parameter with second highest influence on transpiration estimates (in 3-dimensions)

- g_1 values can be different among calculation indices

- The g_1 parameter changes over time and in response to water stress

- We are revisiting the methods of “measuring” the g_1 parameter