Mixing Processes and Ventilation in the CESM x3 Ocean Model: Influences on Biogeochemistry

Associate Professor Keith Moore
Department of Earth System Science
University of California, Irvine

Collaborator:
Markus Jochum, National Center for Atmospheric Research

Funding from the National Science Foundation
BGC Biases in the Standard CESM-BEC due to BGC and Physics

1) Low nutrient bias at high latitudes.
2) Oxygen Minimum Zones (OMZs) too large.

OMZs occur at mid-depths (~150-650m) where there is weak ventilation and a substantial flux of sinking organic matter, leading to depletion of [O$_2$] to < 20 µM.
All simulations gx3v7 resolution, active ocean and sea ice, with strong surface salinity restoring, and normal year forcing. Issues discussed are also present at x1 resolution.

Standard Simulation STD:

1) standard release physics (cesm1.0.1)
2) turned off scaling of denitrification
3) increased remineralization lengthscale (+20m)

All other simulations include modified BGC code, which includes additional processes and optimization of prescribed remineralization curves as a function of depth.
Deep Ocean (>2075m) Ideal Age Distribution from STD model simulation after 2000 years.

Mean Ideal Age Below 2075m
- Global = 976 years
- Southern Ocean = 516 years
- North Pacific = 1408 years

North Pacific age continuing to increase as simulation progresses.
CFC apparent ages for the North Pacific in the Upper OMZ depth range are < 40 years, with highest values off Baja (Warner et al., 1996; Fine et al., 2001). CESM is not forming North Pacific Intermediate Water (NPIW).
BGC biases linked to physical processes:
1) Weak vertical exchange at high latitudes.
2) Weak ventilation of oxygen minimum zones.

Modified Physics Simulation (MODPhys):
1) Imposed a minimum isopycnal mixing rate of 0.8e7 cm²/s, typically between 0.3-3.0e7 cm²/s.
2) Increased diapycnal mixing at high latitudes
generate from 0.17 to 0.35 cm²/s 45-55N
generate from 0.17 to 0.5 cm²/s ~45-55S
additional increase in NW Pac and Lab Sea.
3) Increased critical Richardson number in KPP
(0.3 -> 0.5), acts to deepen mixed layers.
Minimum isopycnal mixing increased by a factor of ~2 to 0.8e7 cm²/s. Mixing rates not changed above this threshold.
Diapycnal mixing rates at 150m depth

Standard CESM

Modified KV

Should there be stronger vertical mixing at high latitudes?
1) Missing NIW mixing
2) Missing Langmuir mixing
3) Shallow mixed layer bias in KPP
Annual Mean Mixed Layer Depth (0.125 density diff)

**Standard CESM**

- A) CESM Mixed Layer Depth
- B) WOA Mixed Layer Depth

**Modified Ricr (0.3>0.5)**

- A) CESM Mixed Layer Depth
- B) WOA Mixed Layer Depth

Global bias = +4m, rmse= 23
Southern Ocean bias = -11m, rmse= 43
Mid-latitude bias = +9m, rmse= 12

Global bias = +10m, rmse=27
Southern Ocean bias = +2m, rmse= 51
Mid-latitude bias = +16m, rmse=13
STD CESM

MOD BGC

MOD BGC & Physics

Observed Nitrate WOA
Lower OMZ (364-671m)

STD CESM
OMZ volume
282% Observed

MOD BGC, STD Physics
OMZ volume
192% Observed

MOD BGC & Physics
OMZ volume
130% Observed

WOA Observed O₂
IAGE (at 250 yrs)  
(167-371m)  
STD CESM  
Mean = 63 yrs  
Npac = 76 yrs

MOD Physics  
Mean = 56 yrs  
Npac = 67 yrs
<table>
<thead>
<tr>
<th>Parameter</th>
<th>STDCESM</th>
<th>BGCMOD</th>
<th>BGCPHYSMOD</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Simulation: (year 250)</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature r, rmse (105m)</td>
<td>0.96, 2.7</td>
<td>0.96, 2.7</td>
<td></td>
</tr>
<tr>
<td>Temperature r, rmse (300m)</td>
<td>0.92, 2.0</td>
<td>0.92, 2.0</td>
<td></td>
</tr>
<tr>
<td>Salinity r, rmse (105m)</td>
<td>0.89, 8.0</td>
<td>0.89, 8.0</td>
<td></td>
</tr>
<tr>
<td>Salinity r, rmse (300m)</td>
<td>0.92, 7.0</td>
<td>0.92, 7.0</td>
<td></td>
</tr>
<tr>
<td>Drake Passage Transport (Sv)</td>
<td>179</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>Mixed Layer Depth bias, rmse</td>
<td>+4, 23</td>
<td>+10, 27</td>
<td></td>
</tr>
<tr>
<td>Southern Ocean ML bias, rmse</td>
<td>-11, 43</td>
<td>+2, 51</td>
<td></td>
</tr>
<tr>
<td>Surface Nitrate r, rmse</td>
<td>0.78, 1.1</td>
<td>0.84, 0.58</td>
<td>0.82, 0.50</td>
</tr>
<tr>
<td>Surface Phosphate r, rmse</td>
<td>0.76, 0.33</td>
<td>0.85, 0.36</td>
<td>0.85, 0.32</td>
</tr>
<tr>
<td>Oxygen (170-364m) bias, rmse</td>
<td>-17, 47</td>
<td>-10, 43</td>
<td>-7, 43</td>
</tr>
<tr>
<td>OMZ (170-364m) (% Vol)</td>
<td>198%</td>
<td>149%</td>
<td>130%</td>
</tr>
<tr>
<td>Oxygen (364-671m) bias, rmse</td>
<td>-23, 49</td>
<td>-12, 42</td>
<td>-7, 41</td>
</tr>
<tr>
<td>OMZ (364-671m) (% Vol)</td>
<td>287%</td>
<td>192%</td>
<td>131%</td>
</tr>
<tr>
<td>Denitrification (TgN/yr)</td>
<td>374</td>
<td>157</td>
<td>102</td>
</tr>
<tr>
<td>Nitrogen Fixation (TgN/yr)</td>
<td>253</td>
<td>134</td>
<td>113</td>
</tr>
<tr>
<td>Export Production (PgC/yr)</td>
<td>6.3</td>
<td>6.0</td>
<td>6.6</td>
</tr>
</tbody>
</table>
Conclusions

1) Ventilation of the mid-depth North Pacific is very weak, due to weak NPIW formation and isopycnal mixing.

2) This contributes to oxygen minimum zones that are much too large in CESM.

3) BGC mods and increased isopycnal mixing improve the OMZs considerably.

4) Nutrient flux to surface waters is weak in the subarctic North Pacific and throughout the Southern Ocean.

5) NIW mixing will help, but doesn’t get the deep winter mixing in both regions, particularly the Southern Ocean.