Hydrology in the Community Land Model

Sean Swenson
Terrestrial Sciences Section
The Community Land Model is a...?

a) Hydrology model

b) Land Surface model

c) Terrestrial Processes model
The movement of **water** is inextricably linked to the flow of **energy** and the life cycle of **vegetation**.
The **modeling** of movement of water is inextricably linked to the **modeling** of the flow of energy and the **modeling** of the life cycle of vegetation.
The Water Balance

\[P = E + R + \Delta S \]

\begin{align*}
P &= \text{Precipitation} \\
E &= \text{Evapotranspiration} \\
R &= \text{Runoff} \\
S &= \text{Storage}
\end{align*}
Different Models, Different Foci

Flood Forecasting ⇒ R

NWP, Climate Prediction ⇒ E

Drought Monitoring, Groundwater ⇒ S
Different Foci, *Different Models*

1-D \Rightarrow Darcy Flow (Infiltration/Recharge)

2-D \Rightarrow River Routing

3-D \Rightarrow Saturated Flow (Groundwater)
CLM is tasked with simulating all of these phenomena...

...therefore, trade-offs will be made.
CLM Water Balance Operations

Precipitation
 ⇒ Partitioning between rain and snow, or between stratiform and convective
 ⇒ Canopy interception, storage, and throughfall
CLM Water Balance Operations

Evaporation

⇒ Evaporation from Soil / Canopy / Snow / Surface Water

⇒ Transpiration from vegetation
CLM Water Balance Operations

Runoff
⇒ Surface Runoff (Infiltration and/or Saturation Excess)
⇒ Subsurface Runoff (Baseflow)
⇒ River Routing
Runoff Generation and Infiltration

Surface Runoff
Subsurface Runoff
Infiltration
Recharge
Vegetation
Unsaturated Zone
Saturated Zone
River Storage
CLM Water Balance Operations

Storage

⇒ Soil Moisture
⇒ Groundwater and water table depth
⇒ Perched water table
⇒ Canopy water
⇒ Surface water
⇒ Snow
Storage Components
Cold Region Storage Components
CLM Submodels

- Soil hydrology and thermodynamics model
- Snow model
- Photosynthesis model
- Radiation and albedo model
- River Transport model
- Lake model
- Urban model
- Vegetation dynamics model
- Carbon and nitrogen cycle model
- Volatile Organic Compound emissions model
- Dust emissions model
Snow model

Treats processes such as:

- Accumulation
- Snow melt and refreezing
- Snow aging
- Water transfer across layers
- Snow compaction:
 - destructive metamorphism due to wind
 - overburden
 - melt-freeze cycles
- Sublimation
- Aerosol deposition

Up to 5-layers of varying thickness
Snow Radiative Transfer (SNICAR)

- Snow darkening from deposited black carbon, mineral dust, and organic matter
- Vertically-resolved solar heating in the snowpack
- Snow aging (evolution of effective grain size) based on:
 - Snow temperature and temperature gradient
 - Snow density
 - Liquid water content and
 - Melt-freeze cycling
Fractional Snow Covered Area

- Describes sub-gridscale snow cover
- Based on snow water equivalent (SWE)
- Dependent on snow history
- Dependent on snow trajectory
Soil model

Treats processes such as:

- Soil moisture redistribution
 - Infiltration
 - Darcy flow
 - Recharge
- Soil moisture phase change
- Soil temperature redistribution

Default structure has 10 layers of variable thickness, spanning nearly 4 meters depth
 - Thermal calculations use additional deep layers
a) Soil moisture (\% saturation)

b) Soil temperature (°C)

Stippling indicates frozen soil
Groundwater model

- Provides bottom boundary condition to soil column
- Groundwater storage increased by recharge, decreased by subsurface flow and exfiltration
- Calculates water table depth
River model

- Routes runoff to the oceans
- Flow directions are obtained from an input dataset
- Calculates water volume and discharge
Model Validation Tools

Ideally, should be:

• Global
• Directly comparable to modeled process/state/flux
• Same spatial / temporal scale
• High accuracy
• Long record

In reality, no datasets meeting these criteria exist...
Flux Towers
Soil Moisture Networks

Top panel: CLM soil moisture
Bottom: Observed soil moisture
River Discharge

Ob at Salehard

Yenisey at Igarka

Lena at Kusur

Mekong at Pakse

Ganga at Farakka

Mississippi at Vicksburg

OBS

CLM4
FLUXNET-MTE

Annual Mean Evapotranspiration

Top panel: FLUXNET-MTE
Bottom: CLM
FLUXNET-MTE

Columbia River Basin
Evapotranspiration

Red: FLUXNET-MTE
Blue/Green: CLM
GRACE Total Water Storage

Mean Annual Amplitude of Total Water Storage

Top panel: GRACE
Bottom: CLM
GRACE Total Water Storage

Columbia River Basin Total Water Storage

Red: GRACE
Blue/Green: CLM
CLM Application Example:
Anthropogenic Groundwater Withdrawal

Human-induced groundwater changes can be estimated by removing the CLM estimate of TWS from the GRACE estimate of TWS.

- **GRACE TWS**
- **CLM TWS**
- **Groundwater**
Simulation Examples I: Tropical

60W / 5S
Hydrologically Relevant Surface Data

[Maps showing distributions of Dominant PFT and Annual Maximum LAI over South America]
Hydrologically Relevant Surface Data
Time Series

lon:300.0/lat:-5.2

Precipitation

Air Temperature
lon:300.0/lat:-5.2

Precipitation

Runoff

Evapotranspiration
lon:300.0/lat:-5.2

Precipitation

Runoff

Total Runoff

Surface Runoff

Evapotranspiration
The water table determines the fraction of the area that is saturated.

Saturated areas produce surface runoff.
Example: Effects of Modifying the Water Table

\[\Delta Z_{WT} = Q_{\text{drainage}} - Q_{\text{recharge}} \]

\[Q_{\text{drainage}} = A \exp(-f \ z) \]

\[Q_{\text{surface}} = F \exp(-g \ z) \]
Current and Future Challenges

• Subgrid heterogeneity and covariance of vegetation, soil moisture, surface water and snow
• Within-canopy turbulent fluxes
• Human management and withdrawals
• Variable soil depths
• Canopy storage
• Hydrological response to land cover change