Analyzing MOM6 with a python/xarray/dask/zarr software stack

R. Dussin

CESM OWG May 11th 2020
Outline

- IDE: Jupyter and extensions
- Compute: Xarray and Dask
- Storage: Zarr
- Useful links
- demo with MOM6
Jupyter ecosystem

server: Interactive python session

client: local web browser

Jupyterlab = more functional IDE

Jupyterhub = multi-user Jupyter server

e.g. jupyterhub.ucar.edu, ocean.pangeo.io
xarray: “label-aware” arrays

• Philosophically similar to netcdf data model
• Dataset = set of DataArrays
• Datasets can be build from N files
• DataArrays have labelled dimensions/coords
• We can use methods working on these labels

```python
ds['thetaco'].sel(xh=slice(-80,-30), yh=slice(40,70),
z_l=2.5, time='2003-01').plot(vmin=-2, vmax=32,
cmap='gist_ncar')
```

```python
clim = ds.mean(dim='time')
```

• xgcm: adds staggered grid awareness to xarray
dask: lazy, parallel and OOC

- xarray runs either numpy or dask under the hood
- if chunks are specified, then dask is the backend
- dask operates in lazy mode, numpy in eager mode
- dask build graph of operations, delays execution
- dask only executes when data is requested (plot,...)
- execution is multi-threaded on cluster (local, k8s, jobqueue)
- can handle dataset size larger than memory (OOC)

```python
from dask.distributed import Client, LocalCluster
cluster = LocalCluster()
client = Client(cluster)
client
```

<table>
<thead>
<tr>
<th>Client</th>
<th>Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduler: tcp://127.0.0.1:63195</td>
<td>Workers: 4</td>
</tr>
<tr>
<td>Dashboard: http://127.0.0.1:63196/status</td>
<td>Cores: 8</td>
</tr>
<tr>
<td>Memory: 17.18 GB</td>
<td>Memory:</td>
</tr>
</tbody>
</table>
Zarr: optimized cloud storage

Why Bother with a new format?

- zarr have BLOSC compression
- designed for cloud object storage
- chunk size matters (10-100 Mo)
- stores can be of different types (zip/directory/…)

```bash
dmdu -sh my_OM4p125_run/*
```

6.8T history
9.4T pp
1.8T restart
2.7T zstore
Zarr: optimized cloud storage
zarr ZipStore vs DirectoryStore

1. In DirectoryStore, 1 chunk = 1 file. For 3d monthly variable (60 yr run), this amounts to a lot. ZipStore = 1 file!!!

2. Similar performance using dask cluster:

```python
rootdir = '/work/Raphael.Dussin/zarr_stores/perf_tests/

zds = xr.open_zarr(f'{rootdir}/zipstore/thetao.zip', consolidated=True)
dds = xr.open_zarr(f'{rootdir}/directory_store/thetao', consolidated=True)

zm = zds['thetap'].mean(dim='time')

%time
zm.load()

%time
dm.load()

CPU times: user 3min 31s, sys: 10.1 s, total: 3min 41s
Wall time: 11min 51s

CPU times: user 3min 43s, sys: 11.2 s, total: 3min 54s
Wall time: 13min 45s
```

3. ZipStore not as commonly used as DirectoryStore hence some bugs found along the way (and fixed)
Useful doc for MOM6
https://mom6-analysiscookbook.rtfd.io

Cookbook

Here are recipes for doing some xarray-based analysis with MOM6.

- Setting up a DASK cluster using dask-jobqueue
 - Your DASK cluster at work
- Setting up a DASK cluster on your local machine
- Sample computation:
- Getting started with MOM6
 - grid variables
 - building a xgcm grid object
 - A note on geographical coordinates
 - Plotting
- Time-based operations
 - 1. Computing climatologies for SST
 - 2. Selecting based on dates
- Spatial Operations
 - 2D horizontal averaging
 - Zonal average
 - 3D average
 - Using xgcm
- Vorticity-based diagnostics
 - Relative vorticity
 - Potential vorticity ($\zeta + f)/h$
- Computations for Potential density, buoyancy and geostrophic shear
 - Potential density
 - Buoyancy
 - Geostrophic shear
- Horizontal Remapping
 - Remapping model output to a 1x1 degree grid
 - Remapping onto the model grid
- Creating nice maps with xarray
 - Polar projections
- Comparing MOM6 data to hydrographic section
GETTING STARTED WITH XGCM FOR MOM6

- MOM6 variables are staggered according to the Arakawa C-grid
- It uses a north-east index convention
- center points are labelled (xh, yh) and corner points are labelled (xq, yq)
- important; variables xh/yh, xq/yq that are named “nominal” longitude/latitude are not the true geographical coordinates and are not suitable for plotting (more later)

See indexing for details.

[1]:
```python
import xarray as xr
from xgcm import Grid
import warnings
import matplotlib.pyplot as plt
from cartopy import import crs as ccrs
import numpy as np
```

[2]:
```python
#matplotlib inline
warnings.filterwarnings("ignore")
```

For this tutorial, we are going to use sample data for the $\frac{1}{2}^\circ$ global model OM4p05 hosted on a GFDL thredds server:

[3]:
```python
dataurl = 'http://35.188.34.63:8080/thredds/dodsC/OM4p05/

ds = xr.open_dataset(f'{dataurl}/ocean_monthly_z.200301-200712.nc4',
        chunks={"time":1, "z_l": 1}, drop_variables=['average_DT',
            'average_TI',
            'average_T2'],
        engine='pydap')
```

[4]:
```python
ds
```

```python
<xarray.Dataset>
Dimensions: (nv: 2, time: 60, xh: 720, xq: 720, yh: 576, yq: 576, z_i: 36, z_l
Coordinates:
  * nv     (nv) float64 1.0 2.0
  * xh     (xh) float64 -299.8 -299.2 -299.2 -298.2 ... 58.75 59.25 59.75
  * xq     (xq) float64 -299.8 -299.2 -299.2 -298.8 ... 59.0 59.5 60.0
```
Demo time

notebook available at

Concluding remarks

- Jupyter:
 - same user experience on every platform
 - easy to prototype analysis
 - deployment in production workflow with *papermill*

- Xarray:
 - easily write high level diagnostics
 - *xgcm* adds model staggered grid awareness

- Dask:
 - easily run performant parallel computations
 - chunking matter!!

- Zarr:
 - great compression
 - choice of chunking is also important

- Importance of community software dev:
 - no “one size fits all” monolithic package
 - contribute to existing packages