Using MOM6

Alistair Adcroft

GFDL MOM6 team includes Raphael Dussin, Robert Hallberg, Stephen Griffies, Matthew Harrison, Hae-Cheol Kim, John Krasting, Marshall Ward, Niki Zadeh

Other contributors for presentation: Kate Hedstrom, Andrew Shao
“Using MOM6”
 - “Where to start?”

Every application is unique
 - Sometimes requires custom code specific to that one configuration

Building new configurations
 - Best to start from working example

1. Getting code/compiling/running
2. Controlling
 - Parameters
 - Diagnostics
3. Examples
 - Places to start
4. Model/repository structure
“Getting started” (Cloning, compiling, running)

• “MOM6 wiki”
 – (first result on google)

• Instructions for
 – Cloning (obtaining code)
 – Compiling (fairly portable)
 – Running (fairly standard)

• User-contributed

• Instructions assume some familiarity with linux & models
• Best limited to stand-alone ocean-only configurations
 – Coupled models are so much more complicated
• Does not cover working within an environment like GFDL’s FRE or CESM’s CIME
 – just low-level basics
Model input: run-time parameters

- Parameter syntax is key, value pairs

 \[KH = 25. \]

 - Self-documenting runs

- Simple API

 - MOM6 always writes out
 - MOM_parameter_doc.all (everything)
 - MOM_parameter_doc.short (non-defaults)

- Bootstrapped parameter parser
 - namelist in input.nml

    ```
    &MOM_input_nml
    output_directory = '.',
    input_filename = 'n'
    restart_input_dir = 'INPUT',
    restart_output_dir = 'RESTART',
    parameter_filename = 'MOM_input',
    'MOM_saltrestore',
    'MOM_override'
    ```

- Typical setup
 - Baseline uses blank MOM_override
 - Perturbation runs concisely contained in MOM_override

- Lots of error checking

Using MOM6
• Reported in MOM_parameter_doc.layout

- Bitwise reproduces across layout
- Optimal tile size ~ 12x12-30x30
 - Tile size = NIGLOBAL/NIPROC,NJGLOBAL/NJPROC
- Halos ~3-4 most typically needed
 - Parameters NIHALO,NJHALO
 - Without high-order advection and certain choices of time-stepping
- Tile dimensions should be >= NIHALO,NJHALO
- Tiles may not be uniform!
 - Different sized tiles are allowed
• Many runs take longer than a single job submission
• Bitwise reproducibility across a restart boundary
• Online time-averaged diagnostics are not included in restarts
 – handled by FMS framework
• Input data usually read from INPUT/
• Diagnostic output is in current directory
• Restart files generally written to RESTART/
• Restart files are read from INPUT/
Controlling diagnostics

- FMS `diag_manager` parses `diag_table`

File definition

<table>
<thead>
<tr>
<th>File Name</th>
<th>Sections</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ocean_daily</td>
<td>1, days, 1, days, time</td>
<td></td>
</tr>
<tr>
<td>ocean_month_snap</td>
<td>1, months, 1, days, time</td>
<td></td>
</tr>
<tr>
<td>ocean_month</td>
<td>1, months, 1, days, time</td>
<td></td>
</tr>
<tr>
<td>ocean_month_z</td>
<td>1, months, 1, days, time</td>
<td></td>
</tr>
<tr>
<td>ocean_annual</td>
<td>12, months, 1, days, time</td>
<td></td>
</tr>
<tr>
<td>ocean_annual_z</td>
<td>12, months, 1, days, time</td>
<td></td>
</tr>
<tr>
<td>ocean_scalar_month</td>
<td>1, months, 1, days, time</td>
<td></td>
</tr>
<tr>
<td>ocean_scalar_annual</td>
<td>12, months, 1, days, time</td>
<td></td>
</tr>
<tr>
<td>ocean_static</td>
<td>-1, months, 1, days, time</td>
<td></td>
</tr>
</tbody>
</table>

- Variable lists per file/module

- **MOM6** wraps `diag_manager`
 - **Registers** same diagnostic in multiple vertical coordinates, multiple names, xy-averages

- Available diagnostics written by MOM6 at run-time
 - `available_diags.0000`

- **Regional** diagnostics
• **double_gyre**
 – Wind driven gyre using stacked shallow water equations

• **Phillips_2layer**
 – Idealized channel model

• **flow_downslope**
 – Adjustment problem over topography using different coordinates

• **OM_05**
 – 1/2° ice-ocean global model
• jupyter notebook
 – (sorry about rainbow colormap)
 – This one uses matplotlib and scipy
• Much more needs to be added
 – Notebook for other examples
 – Others use netCDF4 instead of scipy
 – Will add xarray, seaborn examples
• Very much NOT advocating for one analysis system/style
• 2d density current

• Notebook is a treatise on how plotting in the vertical can go wrong

 – Idea is to explain how the model stores data in the vertical

 ... and how to look at the vertical in native space
• Hallberg, 2013
• Idealized zonal channel
 – Customized forcing
• No jupyter notebooks yet
 – plots were done with Ferret
• ½° global ice-ocean model
 – Uses GFDL SIS2 sea-ice model and GFDL coupler
• Uses GFDL vertical physics
 – ePBL, JHL, ...
• Non-eddying (coarse resolution)
• Uses GM and neutral-diffusion parameterizations

Adcroft et al., 2019
Experiment oriented repositories

- Using a repository for experiment development
 - treating configurations like code
- No new tools (just git)
- Provides history of experiment design
 - Recoverable / reproducible

- Used in other workflows
 - e.g. Payu, ROMS
• Layered repositories using sub-modules
 – Regression results
 • Output from regression tests
 – Platform dependent
 • Records specific version of configurations
 – Configurations
 • Input files (parameters)
 • Records specific versions of source
 – Including URLs (for forks)
 – Source for MOM6, FMS, SIS2, ...
 • Pure source code (+ packages)
config_src/
 • Selectively compiled
 – NCAR coupled mode: nuopc_driver + dynamic
 – Stand-alone ocean model solo_driver + dynamic
 • Alternative version of same code e.g.
 dynamic or dynamic_symmetric

Driver layer

External packages

Model
External packages

- Not compiled in place
- Symbolic links to required source live under src/ and point to pkg/
 - External packages often contain more than source and not all source compiles!
- Each package is a git submodule
 - using specific commit hash
Using MOM6

Code tree: main model

- **MOM6/**
 - config_src/
 - coupled_driver/
 - dynamic/
 - dynamic_symmetric/
 - mct_driver/
 - nuopc_driver/
 - solo_driver/
 - docs/
 - pkg/
 - CVMix-src/
 - geoKdTree/
 - GSW-Fortran/
 - MOM6_DA_hooks/
 - src/
 - ALE/
 - core/
 - diagnostics/
 - equation_of_state/
 - framework/
 - ice_shelf/
 - initialization/
 - ocean_data_assim/
 - parameterizations/
 - lateral/
 - vertical/
 - tracer/
 - user/

- **src/**
 - **Driver layer**
 - **External packages**
 - **Model**

 - Code for solving equations of motion, tracers, diagnostics, etc.
 - Always compiled
 - No CPP macros except for MEMORY and GRID macros
 - the few existing exceptions will be removed one day
Using MOM6
MOM6/

├── .testing/

│

│

│

└── docs/

.docs/

• Continuous integration
 – Runs tests on Travis-CI
 (soon also GitHub Actions)
 – Can be used for development

docs/

• Source for documentation
 hosted at
 https://mom6.readthedocs.io
 – Under dev. by K. Hedstrom
Future topics

- Verification and validation of MOM6 contributions
 - Marshall Ward
- Equations and algorithms
 - Bob Hallberg
- Lagrangian remap method
 - Stephen Griffies
- Analysis and tools
 - Raphael Dussin
- Ocean data assimilation interfaces
 - Matthew Harrison