The user’s guide to CLM4 in CESM1.0.4 which is the active land surface model component of CESM1.0.4. The purpose of this guide is to instruct both the novice and experienced user, as well as CLM developers in the use of CLM4 for land-surface climate modeling.
Dedication

Dedicated to the Land Model Working Group, winners of the 2008 CCSM Distinguished Achievement Award. May you continue to collaborate together well, and continue to drive the science of land surface modeling forward with your diligent and persistent efforts.
Table of Contents

Acknowledgments ... x

Introduction .. xi

Introduction to the CLM4 User’s Guide .. xii

Important Notes and Best Practices for Usage of CLM4 ... xiv

How to Use This Document ... xv

What is new with CLM4 in CESM1.0.4 since previous public releases? .. xvi

 What is new with CLM4 in CESM1.0.4 since the June 15th, 2011 CESM1.0.3 release? xvi
 What is new with CLM4 in CESM1.0.4 Science since CLM4 in CESM1.0.3? xvi
 What is new with CLM4 in CESM1.0.4 Software since CLM4 in CESM1.0.3? xvi

What was new with CLM4 in CESM1.0.3 since the December 8th, 2010 CESM1.0.2 release? xvi

 What was new with CLM4 in CESM1.0.3 Science since CLM4 in CESM1.0.2? xvi
 What was new with CLM4 in CESM1.0.3 Software since CLM4 in CESM1.0.2? xvi

What was new with CLM4 in CESM1.0.2 (in CESM1.0.2) since the September 17th, 2010 CESM1.0.1 release? ... xviii

 What was new with CLM4 in CESM1.0.2 Science since CLM4 in CESM1.0.1? xix
 What was new with CLM4 in CESM1.0.2 Software since CLM4 in CESM1.0.1? xix

What was new with CLM4 in CESM1.0.1 (in CESM1.0.1) since the April 1st, 2010 CCSM4.0 release? ... xix

 What was new with CLM4 in CESM1.0.1 Science since CCSM4.0? .. xx
 What was new with CLM4 in CESM1.0.1 Software since CCSM4.0? .. xx

What was new with CLM4.0.00 since CLM3.5? ... xxi

 What was new with CLM4.0.00 Science? .. xxi
 Biogeophysics and Hydrology .. xxi
 Snow Model ... xxii
 Surface Datasets ... xxii
 Biogeochemistry ... xxii
 Miscellaneous Changes .. xxiii
 Summary of Science Changes ... xxiii

What is new with CLM4.0.00 Software Infrastructure? ... xxiii

What are The New Configuration Options in CLM4.0.00? .. xxiv

What are The New Namelist Options in CLM4.0.00? ... xxiv

What are The New History Fields? .. xxv

Quickstart to using CLM4 ... xxxiii

What is scientifically validated and functional in CLM4? ... xxxv

 Standard Configuration and Namelist Options that are Validated ... xxxv

 Configure Modes NOT scientifically validated, documented, supported or, in some cases, even advised to be used: ... xxxv

 Namelist options that should NOT be exercised: .. xxxvi

 Build-Namelist options that should NOT be exercised: ... xxxvi

 Namelist items that should NOT be exercised: .. xxxvi
What are the UNIX utilities required to use CLM? ... xxxviii

Other resources to get help from .. xxxix

The CESM User's-Guide .. xxxix
The CESM Bulletin Board .. xxxix
The CLM web pages .. xxxix
Reporting bugs in CLM4 .. xl

1. How to customize the configuration for a case with CLM ... 1

Choosing a compset using CLM .. 1

Compsets coupled to data atmosphere and stub ocean/sea-ice ("I" compsets) 1
Compsets coupled to active atmosphere with data ocean.. 3
Fully coupled compsets with fully active ocean, sea-ice, and atmosphere 3
Conclusion to choosing a compset .. 3

Customizing the CLM configuration .. 3

CLM Script configuration items .. 4
Configure time User Namelist .. 9
Precedence of Options ... 10

Setting Your Initial Conditions File .. 10

Doing a hybrid simulation to provide initial conditions ... 11
Doing a branch simulation to provide initial conditions.. 11
Providing a finidat file in your user_nl_clm file ... 11
Adding a finidat file to the XML database ... 12

Other noteworthy configuration items .. 12

Downloading DATM Forcing Data .. 14
Customizing via the template files .. 14

More information on the CLM configure script .. 15

Help on CLM configure ... 15

Customizing the CLM namelist .. 15

Definition of Namelist items and their default values ... 15

Definition of CLM history variables ... 16

Examples of using different namelist features .. 60

The default namelist .. 60
Adding/removing fields on your primary history file .. 61
Adding auxiliary history files and changing output frequency ... 61
Removing all history fields .. 62
Various ways to change history output averaging flags ... 62
Outputting history files as a vector in order to analyze the plant function types within
gridcells ... 63

Conclusion to namelist examples .. 64

Customizing the DATM Namelist and Streams files .. 64

CLM_QIAN mode and it's DATM settings .. 66
CLM1PT mode and it's DATM settings ... 67
CPLHIST3HrWx mode and it's DATM settings ... 67

Conclusion to customizing chapter .. 68
2. Using the CLM tools to create your own input datasets ..69

- Common environment variables and options used in building the FORTRAN tools69
- General information on running the FORTRAN tools ..73
 - Running FORTRAN tools with namelists ..73
 - Running FORTRAN tools with command line options ...73
 - Running FORTRAN tools built with SMP=TRUE ...74
- The File Creation Process ..74
- Using the cprnc tool to compare two history files ...76
- Using interpinic to interpolate initial conditions to different resolutions78
- Using mkgriddata to create grid datasets ...79
 - Convert CESM domain files to CLM grid files ...82
 - Create single point or regional area grid files ..82
 - Convert CAM files to CLM grid files (deprecated) ...83
- Using mkdatadomain to create domain datasets for DATM or docn from CLM grid datasets ...83
- Using mksurfdata to create surface datasets from grid datasets ..84
 - Running mksurfdata.pl ...84
 - Running mksurfdata by Hand ...85
 - Preparing your mksurfdata namelist ..86
 - Experimental options to mksurfdata ..88
 - Standard Practices when using mksurfdata ...88
- Using NCL scripts ndepregrid.ncl and aerdepregrid.ncl to interpolate aerosol deposition datasets 89
 - Using ndepregrid.ncl to interpolate Nitrogen deposition datasets90
 - Using aerdepregrid.ncl to interpolate Aerosol deposition datasets91

3. Adding New Resolutions or New Files to the build-namelist Database93

- Managing Your Own Data-files ..93
- Adding Resolution Names ..94
- Adding or Changing Default Filenames ...95
 - What are the required files? ...96

4. How to run some special cases ..99

- Running with the prognostic crop model on ...99
- Running with the irrigation model on ..100
- Spinning up the Satellite Phenology Model (CLMSP spinup) ...100
- Spinning up the biogeochemistry Carbon-Nitrogen Model (CN spinup)101
- Spinning up the Carbon-Nitrogen Dynamic Global Vegetation Model (CNDV spinup)102
- Running with MOAR data as atmospheric forcing to spinup the model103
- Running with your own previous simulation as atmospheric forcing to spinup the model ...104
- Doing perturbation error growth tests ..106
- Running stand-alone CLM with transient historical CO₂ concentration112
5. How to run Single-Point/Regional cases ... 116
 Which Single Point Option Should I choose? ... 116
 Running PTS_MODE configurations .. 117
 Warning about Running with a Single-Processor on a Batch Machine 118
 Running Supported Single-point/Regional Datasets ... 119
 Running Supported Single-point Datasets that have their own Atmospheric Forcing 120
 Creating your own single-point/regional surface datasets .. 122
 Using getregional_datasets.pl to get a complete suite of single-point/regional surface datasets from global ones ... 125
 Running with your own atmosphere forcing .. 127
6. How to run PTCLM1.110726 .. 133
 Introduction to PTCLM .. 133
 Guide to the options of PTCLM .. 134
 Overview on using PTCLM .. 135
 Details on the options of PTCLM ... 137
 Examples using PTCLM .. 141
 Adding data for use by PTCLM .. 143
 PTCLM Group Site Lists .. 143
 Dynamic Land-Use Change Files for use by PTCLM .. 144
 Converting AmeriFlux Data for use by PTCLM .. 144
 PTCLM transient example over a shorter time period .. 145
 A bit about the structure of PTCLM, what it does, and how it works 146
7. Trouble Shooting Problems ... 147
 Trouble with Configuration ... 147
 Trouble with Building ... 148
 Trouble with Running .. 149
 Tracking Problems by Querying Log Files ... 149
 The coupler log file .. 149
 The ccsmlog file .. 150
 The CLM log file ... 152
 The DATM log file ... 152
 The batch log files ... 153
 General Advice on Debugging Run time Problems .. 153
 Run in DEBUG mode .. 153
 Run with a smaller set of processors .. 154
 Run in serial mode with a single processor ... 154
 Run at a lower resolution .. 155
 Run a simpler case .. 155
 Run with a debugger .. 155
 A. Editing Template Files Before Configure ... 156
 Outline of the CLM template .. 156
 Outline of the DATM template .. 157
 Adding a new DATM_MODE to the DATM template .. 158
B. Using the Script runinit_ibm.csh to both Run CLM and Interpolate Datasets 161
C. Scripts for testing CLM ... 162
 Testing CLM Using the CESM Test Scripts .. 162
 Testing CLM Using the CLM Stand-Alone Testing Scripts .. 162
 Testing PTCLM use the PTCLM test script .. 163
D. Building the Users-Guide Documentation for CLM ... 164
List of Examples

1-1. Example user_nl_clm namelist file ... 9
1-2. Default CLM Namelist .. 60
1-3. Example user_nl_clm namelist adding and removing fields on primary history file .. 61
1-4. Example user_nl_clm namelist adding auxiliary history files and changing output frequency .. 61
1-5. Example user_nl_clm namelist removing all history fields 62
1-6. Example user_nl_clm namelist with various ways to average history fields 63
1-7. Example user_nl_clm namelist outputting some files in 1D Vector format 64
2-1. Example of running CLM to create a template file for interpinic to interpolate to 78
2-2. Example of building and running interpinic to interpolate a 1-degree finidat dataset to 10x15 79
2-3. Example mkgriddata namelist to convert CESM 4x5 domain files to CLM grid files ... 82
2-4. Example mkgriddata namelist to create regional grid over Amazon 83
2-5. Example mkdatadomain namelist to create a domain file from CLM frac and grid data files 84
2-6. Example of running mksurfdata.pl to create a 4x5 resolution fsurdat for a 1850 simulation year 85

2-7. Getting the raw datasets for mksurfdata to your local machine using the check_input_data script 87
4-1. Example Crop Simulation ... 99
4-2. Example Irrigation Simulation .. 100
4-3. Example AD_SPINUP Simulation ... 101
4-4. Example EXIT_SPINUP Simulation ... 101
4-5. Example Final CN Spinup Simulation ... 102
4-6. Example CNDV Spinup Simulation .. 103
4-7. Example Simulation with MOAR Data on bluefire 104
4-8. Example Fully Coupled Simulation to Create Data to Force Next Example Simulation 105
4-9. Example Simulation Forced with Data from the Previous Simulation 105
4-10. Example non-perturbed error growth simulation 107
4-11. Example perturbed error growth simulation .. 107
4-12. Example Transient Simulation with Historical CO₂ 113
5-1. Example of running CLM over a single-point test site in Brazil with the default Qian atmosphere data forcing ... 119
5-2. Example of running CLM over the single-point of Mexicocity Mexico with the default Qian atmosphere data forcing ... 119
5-3. Example of running CLM over the single-point of Vancouver Canada with supplied atmospheric forcing data for Vancouver ... 121
5-4. Example of running getregional_datasets.pl to get datasets for a specific region over Alaska 126
5-5. Example of using CLM_USRDAT_NAME to run a simulation using user datasets for a specific region over Alaska ... 127
5-6. Example of setting up a case with your own atmosphere forcing 128
5-7. Example of DATM streams files with your own forcing for 3-hourly data 129
6-1. Example of running PTCLM1 for US-UMB on bluefire 133
6-2. Example of running PTCLM1 for the Mexicocity supported single point dataset 141
6-3. Example of running PTCLM1 for a spinup simulation with Qian data for tower years 142
6-4. Example of running PTCLM1 on a generic machine with global PFT and soil types dataset 142
6-5. Example of running PTCLM for transient land-use 1991-2006 for US-Ha1 on bluefire 145
7-1. Example of configure problem with missing datasets 147
A-1. Getting help with build_streams for DATM .. 159
Acknowledgments

I want to acknowledge all of the people that helped review or edit the model documentation: David Lawrence, Samuel Levis, Keith Oleson, and Sean Swenson. Thank you for your help in catching errors, and making the document more understandable and readable. Our readers thank you as well, as now it is much easier for them to digest. Any mistakes, or errors are all mine. If you run across one of those errors, please let us know, by following the Section called Reporting bugs in CLM4 in Other resources to get help from. I also want to thank Sheri Mickelson, for her work in doing perturbation analysis on bluefire and intrepid, which was used in our initial versions of this User's Guide. We also want to thank the original authors of PTCLM: Daniel M. Ricciuto, Dali Wang, Peter E. Thornton, Wilfred M. Post, and R. Quinn Thomas for providing a nice addition to the CESM effort. We also want to thank the folks at University of Michigan Biological Stations (US-UMB) who allowed us to use their Fluxnet station data and import it into our inputdata repository, especially Gil Bohrer the PI on record for this site (see the Section called Converting AmeriFlux Data for use by PTCLM in Chapter 6 for permission information on using this data).
Introduction

The Community Land Model (CLM4 in CESM1.0.4) is the latest in a series of global land models developed by the CESM Land Model Working Group (LMWG) and maintained at the National Center for Atmospheric Research (NCAR). This guide is intended to instruct both the novice and experienced user on running CLM. This guide pertains to the latest version CLM4 in CESM1.0.4 available for download from the public release subversion repository as a part of CESM1.0.4. Documentation may be different if you are using an older version, you should either update to the latest version, or use the documentation inside your own source tree. There is information in the ChangeLog file and in the What is new with CLM4 in CESM1.0.4 since previous public releases? regarding the changes from previous versions of CESM.

The novice user should read Chapter 1 in detail before beginning work, while the expert user should read What is new with CLM4 in CESM1.0.4 since previous public releases? and Quickstart to using CLM4 chapters, and then use the more detailed chapters as reference. Before novice users go onto more technical problems covered in Chapter 2, Chapter 3, Chapter 4, or Chapter 5 they should know the material covered in Chapter 1 and be able to replicate some of the examples given there.

All users should read the How to Use This Document and Other resources to get help from sections to understand the document conventions and the various ways of getting help on using CLM4. Users should also read the What is scientifically validated and functional in CLM4? section to see if their planned use of the model is something that has been scientifically validated and well tested. Users that are NOT using NCAR machines or our list of well tested machines should also read the What are the UNIX utilities required to use CLM? section to make sure they have all the required UNIX utilities on the system they want to do their work.
Introduction to the CLM4 User’s Guide

What is in here anyway?

Here in the introduction we first give a simple guide to understand the document conventions in How to Use This Document. The next section What is new with CLM4 in CESM1.0.4 since previous public releases? describes the differences between CLM4 in CESM1.0.4 and CLM4.0.00 (for each CESM release version up to CESM1.0.4) as well as between CLM4.0.00 and CLM3.5, both from a scientific as well as a software engineering point of view. It also talks about differences in the configuration, namelist, and history fields. The next section Quickstart to using CLM4 is for users that are already experts in using CLM and gives a quickstart guide to the bare details on how to use CLM4. The next What is scientifically validated and functional in CLM4? tells you about what has been extensively tested and scientifically validated (and maybe more importantly) what has NOT. What are the UNIX utilities required to use CLM? lists the UNIX utilities required to use CLM4 and is important if you are running on non-NCAR machines, generic local machines, or machines NOT as well tested by us at NCAR. Next we have Important Notes and Best Practices for Usage of CLM4 to detail some of the best practices for using CLM4 for science. The last introductory section is Other resources to get help from which lists different resources for getting help with CESM1.0 and CLM4.

Chapter 1 goes into detail on how to setup and run simulations with CLM4 and especially how to customize cases. Details of configure modes and build-namelist options as well as namelist options are given in this chapter.

Chapter 2 gives instructions on the CLM4 tools for creating input datasets for use by CLM, for the expert user. There’s an overview of what each tool does, and some general notes on how to build the FORTRAN tools. Then each tool is described in detail along with different ways in which the tool might be used. A final section on how to customize datasets for observational sites for very savvy expert users is given as the last section of this chapter.

As a followup to the tools chapter, Chapter 3 tells how to add files to the XML database for build-namelist to use. This is important if you want to use the XML database to automatically select user-created input files that you have created when you setup new cases with CLM.

In Chapter 4, again for the expert user, we give details on how to do some particularly difficult special cases. For example, we give the protocol for spinning up both the CLMCN model and CLM with dynamic vegetation active (CNDV). We give instructions to do a spinup case from a previous case with Coupler history output for atmospheric forcing. We also give instructions on running both the prognostic crop and irrigation models. We also review how to validate a port to a new machine using the Perturbation error growth technique. Lastly we tell the user how to use the DATM model to send historical CO$_2$ data to CLM.

Chapter 5 outlines how to do single-point or regional simulations using CLM4. This is useful to either compare CLM simulations with point observational stations, such as tower sites (which might include your own atmospheric forcing), or to do quick simulations with CLM for example to test a new parameterization. There are several different ways given on how to perform single-point simulations which range from simple PTS_MODE to more complex where you create all your own datasets, tying into Chapter 2 and also Chapter 3 to add the files into the build-namelist XML database. After this chapter Chapter 6 chapter outlines how to use the PTCLM python script to help you run single-point simulations.

Finally, Chapter 7 gives some guidance on trouble-shooting problems when using CLM4. It doesn’t
cover all possible problems with CLM, but gives you some guidelines for things that can be done for some common problems.

In the appendices we talk about some issues that are useful for advanced users and developers of CLM. In Appendix A we give some basic background to the CLM developer on how to edit the models/ind/clm/bld/clm.cpl7.template. This is a very difficult exercise and we don’t recommend it for any, but the most advanced users of CLM who are also experts in UNIX and UNIX scripting.

In Appendix B we go over how to run the script runinit_ibm.csh that will interpolate standard resolution initial condition dataset to several other resolutions at once. It also runs CLM to create template files as well as doing the interpolation using interpinic. In general this is only something that a developer would want to do. Most users will only want to interpolate for a few specific resolutions.

In Appendix C we go over the automated testing scripts for validating that the CLM is working correctly. The test scripts run many different configurations and options with CLM making sure that they work, as well as doing automated testing to verify restarts are working correctly, and testing at many different resolutions. In general this is an activity important only for a developer of CLM, but could also be used by users who are doing extensive code modifications and want to ensure that the model continues to work correctly.

Finally in Appendix D we give instructions on how to build the documentation associated with CLM (i.e. how to build this document). This document is included in every CLM distribution and can be built so that you can view a local copy rather than having to go to the CESM website. This also could be useful for developers who need to update the documentation due to changes they have made.
Important Notes and Best Practices for Usage of CLM4

- When running with CN, it is critical to begin with initial conditions that are provided with the release or to spin the model up following the CN spinup procedure before conducting scientific runs (see the Section called Spinning up the biogeochemistry Carbon-Nitrogen Model (CN spinup) in Chapter 4. Simulations without a proper spinup will effectively be starting from an unvegetated world. See the Section called Setting Your Initial Conditions File in Chapter 1 for information on how to provide initial conditions for your simulation.

- Initial condition files are provided for fully coupled BCN and offline ICN cases for 1850 and 2000 at 1deg, 2deg, and T31 resolutions. There's also an initial condition file for ICN with the prognostic crop model for 2000 at 2deg resolution, and one with CLMSP for 2000 at 2deg resolution. We also have initial conditions for offline CNDV for 1850. And there are interpolated datasets for 4x5 and 10x15 resolution for 1850. The 1850 initial condition files are in 'reasonable' equilibrium. The 2000 initial condition files represent the model state for the year 2000, and have been taken from transient simulations. Therefore, by design the year 2000 initial condition files do not represent an equilibrium state. Note also that spinning the 2000 initial conditions out to equilibrium will not reflect the best estimate of the real carbon/nitrogen state for the year 2000.

- Users can generate initial condition files at different resolutions by using the CLM tool interpinic to interpolate from one of the provided resolutions to the resolution of interest. Interpolated initial condition files may no longer be in 'reasonable' equilibrium.

- Aerosol deposition is a required field to CLM4 sent from the atmosphere model. Simulations without aerosol deposition will exhibit unreasonably high snow albedos. The model sends aerosol deposition from the atmospheric model (either CAM or DATM). When running with prescribed aerosol the atmosphere model will interpolate the aerosols from 2-degree resolution to the resolution the atmosphere model is running at.
How to Use This Document

Conventions used in the document for code and commands

This section provides the details in using CLM with the CESM modeling system. Links to descriptions and definitions have been provided in the code below. We use the same conventions used in the CESM documentation as outlined below.

Throughout the document this style is used to indicate shell commands and options, fragments of code, namelist variables, etc. Where examples from an interactive shell session are presented, lines starting with > indicate the shell prompt. A backslash "\" at the end of a line means the line continues onto the next one (as it does in standard UNIX shell). Note that $EDITOR* is used to refer to the text editor of your choice. $EDITOR is a standard UNIX environment variable and should be set on most UNIX systems. Comment lines are signaled with a "#" sign, which is the standard UNIX comment sign as well. $CSMDATA is used to denote the path to the inputdata directory for your CESM data.

> This is a shell prompt with commands \ that continues to the following line.
> $EDITOR filename # means you are using a text editor to edit "filename"
This is a comment line
What is new with CLM4 in CESM1.0.4 since previous public releases?

In this section we list the updates that have occurred to CLM4 since previous public releases. In the first sections we describe changes in CLM4 in CESM1.0.4 since the CCSM4.0 release, and in the last one we describe changes from CLM3.5 to CLM4.0.00 release. Note, that the changes in the last section do NOT include the more recent changes given in the first section, but only list the changes from CLM3.5 to the CLM4.0.00 release that was part of the CCSM4.0 public release. We will describe both the changes in the science in the model as the software engineering changes. Software engineering changes includes the configure and namelist changes, as well as the new history fields.

What is new with CLM4 in CESM1.0.4 since the June 15th, 2011 CESM1.0.3 release?

What is new with CLM4 in CESM1.0.4 Science since CLM4 in CESM1.0.3?

No new science was introduced in CLM4 in CESM1.0.4. The scientific model version is the same as the CESM1.0.3 release.

What is new with CLM4 in CESM1.0.4 Software since CLM4 in CESM1.0.3?

Several bug fixes for CESM1.0.3 were implemented. A couple issues with CNDV were resolved. A issue with the configure step where it would hang with a bad user_nl_clm file was fixed. A few issues with history variables was fixed. We fixed it so that you could build with C13 on bluefire. Domain files and fraction files were made to be consistent. A problem with Gregorian input was fixed. Several issues with PTCLM were fixed. Monthly average files are no longer required to be one per month. CLM1PT mode was changed to "cycle" mode by default so that simulations running beyond the valid data range would NOT be invalidated. And a couple problems with PIO were fixed. The I1850SPINUPCN was changed to point to an appropriate 1850 case rather than a transient case.

For history variable issues: the variables: CISUN, CISHA, ALPHAPSNSUN, and ALPHAPSNSHA were fixed, and the units were corrected for: H2OSNO_TOP, HC, and HCSOI.

The domain and fraction files that were made to be consistent were for the following resolutions:
T85_T85, T42_T42, T31_T31, f10_f10, f45_45, f19_f19, f09_f09, f05_f05, and f02_f02.

The PTCLM issues fixed were as follows. The version of PTCLM1 was updated from PTCLM1.110504 to PTCLM1.110726. The soil data was corrected for the US-UMB site. The final spinup time was fixed. And a problem with transient compsets was fixed.
What was new with CLM4 in CESM1.0.3 since the December 8th, 2010 CESM1.0.2 release?

What was new with CLM4 in CESM1.0.3 Science since CLM4 in CESM1.0.2?

A prognostic crop model option was added in (based on Agro-IBIS) from work by Samuel Levis. The crop model adds in four new vegetation types for: soybean, winter and spring temperate cereals, and corn on their own separate columns. Winter cereal was added as a PFT type, but doesn’t exist in the input datasets, only spring cereal is used. Winter cereal also has NOT been scientifically validated or tested. The model manages these by modeling both planting and harvesting. See the Section called Running with the prognostic crop model on in Chapter 4 for an example of running with it.

Also an irrigation model was added from work by Samuel Levis and Bill Sacks. This model takes water from runoff and adds it to the generic crop for those areas equipped for irrigation. See the Section called Running with the irrigation model on in Chapter 4 for an example of running with it. Please note that the irrigation model does not currently work with the new crop model described above, but rather only works with the generic crop.

What is new with CLM4 in CESM1.0.3 Software since CLM4 in CESM1.0.2?

Since CLM4 in CESM1.0.2 all Input/Output uses PIO (Parallel Input/Output package). Restart history files are now NetCDF. Input and output files can be read/written in parallel using PIO. We removed a list of old CPP defines and removed the old misc/preproc.h files. Also a new tool for working with single-point sites was added into the CESM scripts the Python tool PTCLM. We have a complete Chapter 6 chapter on it’s use.

New configuration options:

-crop
-noio

Configuration options removed:

-dust
-progsslt

New build-namelist options:

-irrig
-co2_ppmv
-rtm_res
-rtm_tstep

New precedence for build-namelist options is...

Values set on the command-line using the -namelist option (CLM_NAMELIST_OPTS).
What is new with CLM4 in CESM1.0.4 since previous public releases?

Values read from the file specified by -infile (user_nl_clm file).
Datasets from the -clm_usr_name option (CLM_USRDAT_NAME).
Values set from a use-case scenario, e.g., -use_case (CLM_NML_USE_CASE).
Values from the namelist defaults file.

Namelist options renamed:

- carbon_only => suplnitro (can be set to NONE, PROG_CROP_ONLY, or ALL)

Namelist options removed:

- carbon_only => suplnitro
- scaled_harvest
- hist_crtinic
- hist_pioflag
- ncd_lowmem2d
- ncd_pio_def
- ncd_pio_UseRearranger
- ncd_pio_UseBoxRearr
- ncd_pio_SerialCDF
- ncd_pio_IODOF_rootonly
- ncd_pio_DebugLevel
- ncd_pio_num_iotasks

New history fields:

- A5TMIN 5-day running mean of min 2-m temperature (K)
- A10TMIN 10-day running mean of min 2-m temperature (K)
- GDD0 Growing degree days base 0C from planting (ddays)
- GDD8 Growing degree days base 8C from planting (ddays)
- GDD10 Growing degree days base 10C from planting (ddays)
- GDD020 Twenty year average of growing degree days base 0C from planting (ddays)
- GDD820 Twenty year average of growing degree days base 8C from planting (ddays)
- GDD1020 Twenty year average of growing degree days base 10C from planting (ddays)
- GDDPLANT Accumulated growing degree days past planting date for crop (ddays)
- GDDHARV Growing degree days (gdd) needed to harvest (ddays)
- GDDTSOI Growing degree-days from planting (top two soil layers) (ddays)
- QIRRIG water added through irrigation (mm/s)

SNOWLIQ and SNOWICE changed from average to instantaneous output.

What was new with CLM4 in CESM1.0.2 (in CESM1.0.2) since the September 17th, 2010 CESM1.0.1 release?

Since, CLM4 in CESM1.0.1 in the CESM1.0.1 release there were several developments made to CLM4 in CESM1.0.2. Several new namelist items were added a few new history fields. There were also some updates for running the model with single-point mode.

Configuration options that were renamed:

- prog_seasalt => progsslt
What is new with CLM4 in CESM1.0.4 since previous public releases?

Namelist items removed:
prog_seasalt => progsslt

What was new with CLM4 in CESM1.0.2 Science since CLM4 in CESM1.0.1?

A long simulation at the course resolution of T31 (typically used for Paleo-climate studies) was done and an spun-up initial condition file was provided for this resolution (also by default the namelist variable ice_runoff was turned off for T31). Also a new surface dataset and transient land-cover dataset was provided for half-degree resolution.

What was new with CLM4 in CESM1.0.2 Software since CLM4 in CESM1.0.1?

New configuration options

sitespf_pt

sitespf_pt is used for single-point/regional mode and is set to the site-name that will be used (see the config_definition.xml for the list of valid options).

Configuration options that were renamed:

prog_seasalt => progsslt

Namelist items removed:

faerdep
fndepdat
fndepdyn
use_ndepstream

Nitrogen deposition datasets are now only entered through the ndepdyn_nml namelist (removing fndepdat, fndepdyn, and use_ndepstream). Aerosol deposition is now a required input from the atmosphere model, hence faerdep is removed.

New history fields:

U10 10-m wind (m/s)
U10_DUST 10-m wind for dust model (m/s)
VA atmospheric wind speed plus convective velocity (m/s)
VOLR RTM storage: LIQ (m3)
VOLR_ICE RTM storage: ICE (m3)

What was new with CLM4 in CESM1.0.1 (in CESM1.0.1)
since the April 1st, 2010 CCSM4.0 release?

From, CLM4.0.00 in the CCSM4.0 release to CLM4 in CESM1.0.1 there were several developments made to CLM. A glacier multiple elevation class option was added that allows the use of CLM4 with a glacier land ice model the Community Ice Sheet Model (CISM). A bug-fix for the snow hydrology was added. Several new namelist items were added a few new history fields. Also the capability of reading aerosol and nitrogen deposition from stream files at one resolution and regridded on the fly rather than with datasets at the model resolution was added in. This was important for higher resolutions so that large datasets do not have to be created before running the model, nor are datasets for every resolution required.

What was new with CLM4 in CESM1.0.1 Science since CCSM4.0?

In general, snow layers should not be thinner than

\[dz_{min} = \frac{w_{ice}}{\rho_{ice}} + \frac{w_{liq}}{\rho_{liq}} \]

If \(dz < dz_{min} \), then the value of "void" computed in subroutine SnowCompaction is negative, which is unphysical. This doesn’t cause problems with the compaction itself, but results in unrealistic values of vol_ice, vol_liq, and eff_porosity in subroutine SnowWater. We can have vol_ice = 1 and vol_liq = 0 even when liquid is present, which cuts off the runoff (qout) from the lowest snow layer. Liquid water then accumulates in the snow column without draining, which leads to further problems and eventually a code crash.

The solution to this problem was to adjust layer thickness \(dz \) for any water+ice content changes in excess of previous layer thickness, e.g.,

\[dz(c,j) = \max(dz(c,j), \frac{h_{2osoi_liq}(c,j)}{\rho_{h2o}} + \frac{h_{2osoi_ice}(c,j)}{\rho_{ice}}) \]

at appropriate steps in the snow hydrology subroutines.

Snow hydrology bug fix.
Add multiple elevation class option for glaciers so can interact with the land ice sheet model.

What was new with CLM4 in CESM1.0.1 Software since CCSM4.0?

New configuration options

\[glc_nec \]

\(glc_nec \) can be 1,3,5, or 10 and MUST match the number on the input surface dataset the elevation classes themselves are read from the surface dataset

New namelist items:
carbon_only
create_glacier_mec_landunit
glc_dyntopo
glc_smb
ice_runoff
ndepmapalgo
scaled_harvest

carbon_only = If true, and CLMCN carbon-nitrogen model is on, Nitrogen is unlimited rather than
prognosed and vegetation will be over-productive (replaces the supplemental Nitrogen #ifdef)
create_glacier_mec_landunit (= T when these landunits are created; F by default)
glc_smb (= T if passing surface mass balance to GLC; else pass PDD info; T by default)
glc_dyntopo (= T if CLM topography changes dynamically; currently F) (NOT fully implemented yet)
ice_runoff = If true, river runoff will be split up into liquid and ice streams, otherwise ice runoff will be
zero and all runoff directed to liquid stream
ndepmapalgo = Mapping method from Nitrogen deposition input file to the model resolution (can be
bilinear,nn,nnonl,nnonj,spval,copy, bilinear by default)
scaled_harvest = If true, harvesting will be scaled according to coefficients determined by Johann
Feddema, 2009

New history fields:

aais_area Antarctic ice area (km^2)
aais_mask Antarctic mask (unitless)
gris_area Greenland ice area (km^2)
gris_mask Greenland mask (unitless)
QICE ice growth/melt (mm/s)
QICEYR ice growth/melt (mm/s)
QTOPSOIL water input to surface (mm/s)
VOLR RTM storage: LIQ (m3)
VOLR_ICE RTM storage: ICE (m3)

What was new with CLM4.0.00 since CLM3.5?

From CLM3.5 to CLM4.0.00 there were advances in both the science and the software infrastructure.
There were also new configure and namelist options as well as new history fields. In this section we will
describe each of these changes in turn.

What was new with CLM4.0.00 Science?

The following aspects are changes to the science in CLM4.0.00 since CLM3.5.

Biogeophysics and Hydrology

Changes to CLM4.0.00 beyond CLM3.5 (Oleson et al., 2008a; Stockli et al., 2008) include updates
What is new with CLM4 in CESM1.0.4 since previous public releases?

The hydrology scheme has been modified with a revised numerical solution of the Richards equation (Zeng and Decker, 2009; Decker and Zeng, 2009); a revised soil evaporation parameterization that removes the soil resistance term introduced in CLM3.5 and replaces it with a so-called B formulation, as well as accounts for the role of litter and within-canopy stability (Sakaguchi and Zeng, 2009). CLM4 also includes a representation of the thermal and hydraulic properties of organic soil that operates in conjunction with the mineral soil properties (Lawrence and Slater, 2008). The ground column has been extended to ~50-m depth by adding five additional hydrologically inactive ground layers (making a total of 15 ground layers, 10 soil layers and 5 bedrock layers; Lawrence et al., 2008). An urban landunit and associated urban canyon model (CLMU) has been added which permits the study of urban climate and urban heat island effects (Oleson et al., 2008b).

Snow Model

The snow model is significantly modified via incorporation of SNICAR (SNow and Ice Aerosol Radiation) which represents the effect of aerosol deposition (e.g. black and organic carbon and dust) on albedo, introduces a grain-size dependent snow aging parameterization, and permits vertically resolved snowpack heating (Flanner and Zender, 2005; Flanner and Zender, 2006; Flanner et al., 2007). The new snow model also includes a new density-dependent snow cover fraction parameterization (Niu and Yang, 2007), a revised snow burial fraction over short vegetation (Wang and Zeng, 2009) and corrections to snow compaction (Lawrence and Slater, 2009).

Surface Datasets

The PFT distribution is as in Lawrence and Chase (2007) except that a new cropping dataset is used (Ramankutty et al., 2008) and a grass PFT restriction has been put in place to reduce a high grass PFT bias in forested regions by replacing the herbaceous fraction with low trees rather than grass. Grass and crop PFT optical properties have been adjusted according to values presented in Asner et al. (1998), resulting in significantly reduced albedo biases. Soil colors have been re-derived according to the new PFT distribution.

Biogeochemistry

The model is extended with a carbon-nitrogen biogeochemical model (Thornton et al., 2007; Thornton et al., 2009; Randerson et al., 2009) which is referred to as CLMCN. CN is based on the terrestrial biogeochemistry Biome-BGC model with prognostic carbon and nitrogen cycle (Thornton et al., 2002; Thornton and Rosenbloom, 2005). CLMCN is prognostic with respect to carbon and nitrogen state variables in the vegetation, litter, and soil organic matter. Vegetation phenology and canopy heights are also prognostic. A detailed description of the biogeochemical component can be found in Thornton et al. (2007). Note that CLM4.0.00 can be run with either prescribed satellite phenology (CLMSP) or with prognostic phenology provided by the carbon-nitrogen cycle model (CLMCN). Additionally, a transient land cover and land use change, including wood harvest, capability has been introduced that enables the evaluation of the impact of historic and future land cover and land use change on energy, water, and momentum fluxes as well as carbon and nitrogen fluxes. The dynamic global vegetation model in CLM3.0 has been revised such that the carbon dynamics (e.g. productivity, decomposition, phenology, allocation, etc.) are controlled by CN and only the dynamic vegetation biogeography (competition)
aspect of the CLM3.0 DGVM is retained. The biogenic volatile organic compounds model (BVOC) that was available in CLM3.0 has been replaced with the MEGAN BVOC model (Heald et al. 2008).

Miscellaneous Changes

Several other minor changes have been incorporated including a change to the atmospheric reference height so that it is the height above zo+d for all surface types. The convergence of canopy roughness length zo and displacement height d to bare soil values as the above-ground biomass, or the sum of leaf and stem area indices, goes to zero is ensured (Zeng and Wang, 2007). Several corrections have been made to the way the offline forcing data is interpreted. The main change is a vastly improved and smooth diurnal cycle of incoming solar radiation that conserves the total incoming solar radiation from the forcing dataset. Additionally, in offline mode rather than partitioning incoming solar radiation into a constant 70%/30% direct vs diffuse split, it is partitioned according to empirical equations that are a function of total solar radiation. Finally, to improve global energy conservation in fully coupled simulations, runoff is split into separate liquid and ice water streams that are passed separately to the ocean. Input to the ice water comes from excess snowfall in snow-capped regions.

Summary of Science Changes

Taken together, these augmentations to CLM3.5 in CLM4.0.00 result in improved soil moisture dynamics that lead to higher soil moisture variability and drier soils. Excessively wet and unvarying soil moisture was recognized as a deficiency in CLM3.5 (Oleson et al. 2008a, Decker and Zeng, 2009). The revised model also simulates, on average, higher snow cover, cooler soil temperatures in organic-rich soils, greater global river discharge, lower albedos over forests and grasslands, and higher transition-season albedos in snow covered regions, all of which are improvements compared to CLM3.5.

What is new with CLM4.0.00 Software Infrastructure?

The following aspects are changes to the software infrastructure in CLM4.0.00 since CLM3.5.

- Update to cpl7 and scripts.
- Remove offline and cpl6 modes.
- Remove support for CASA model.
- Update to datm8 atmospheric data model.
- Add gx3v7 land mask for T31 and fv-4x5 horizontal resolutions.
- Add gx1v6 land mask for f05, f09, and f19 horizontal resolutions.
- Add tx1v1 land mask and 1.9x2.5 tx1v1 horizontal resolution.
- Add in 2.5x3.33 horizontal resolution.
- Add in T62 horizontal resolution so can run at same resolution as input DATM data.
- Allow first history tape to be 1D.
- Add ability to use own version of input datasets with CLM_USRDAT_NAME variable.
- Add script to extract out regional datasets.
- New **build-namelist** system with XML file describing all namelist items.
- Add glacier_mec use-case and stub glacier model.
- Make default of maxpatch_pft=numpft+1 instead of 4.
- Only output static 3D fields on first h0 history file to save space.
- Add new fields for VOC (Volatile Organic Compounds) on surface datasets, needed for the new MEGAN VOC model.
- Add irrigation area to mksurfdatal tool (NOT used in CLM yet).
Add multiple elevation class option for glaciers in mksurfdata tool (NOT used in CLM yet).
Add ascale field to land model in support of model running on it's own grid.

What are The New Configuration Options in CLM4.0.00?

Describe any changes made to build system:

Change directory structure to match CCSM.
Add BGP target.
Add choice between ESMF and MCT frameworks.
Start removing #ifdef and directives that supported Cray-X1 Phoenix as now decommissioned.
Make default of maxpatch_pft=numpft+1 instead of 4 for all configurations.
By default turn on CLAMP when either CN or CASA is enabled
New SNICAR_FRC, CARBON_AERO, and C13 CPP ifdef tokens.

New options added to configure: More information on options to CLM configure are given in the Section called More information on the CLM configure script in Chapter 1.

Option: -comp_intf <name>
Description: Component interface to use (ESMF or MCT) (default MCT)

Option: -nofire
Description: Turn off wildfires for bgc setting of CN (default includes fire for CN)

Option: -pio <name>
Description: Switch enables building with Parallel I/O library. [on | off] (default is on)

Option: -snicar_frc <name>
Description: Turn on SNICAR radiative forcing calculation. [on | off] (default is off)

More information on options to CLM configure are given in the Section called More information on the CLM configure script in Chapter 1.

What are The New Namelist Options in CLM4.0.00?

build-namelist now checks the validity of your namelist you generate by looking at data in the namelist_definition.xml file. In order to add new namelist items you need to change the code and also edit this file (e.g. a namelist option required for your research project that is not currently an option in CLM4.0.00). To view information on the namelist view the file:
models/lnd/clm/bld/namelist_files/namelist_definition.xml in a browser and you'll see the names, type, description and valid_values for all namelist variables.

Changes to build-namelist:

Allow simulation year entered to include ranges of years (i.e. 1850-2000)
Remove cam_hist_case option.
Make sure options ONLY used for stand-alone testing have a "dry_" or "datm_" prefix in them and list these options all together when asking for help from build-namelist.

New option to build-namelist:

- -clm_usr_name "name" Dataset resolution/descriptor for personal datasets.
 Default: not used
 Example: 1x1pt_boulderCO_c090722 to describe location,
What is new with CLM4 in CESM1.0.4 since previous public releases?

number of pts, and date files created

New list options to build-namelist

cd models/lnf/clm/bld
./build-namelist -res list # List valid resolutions
./build-namelist -mask list # List valid land-masks
./build-namelist -sim_year list # List valid simulation years and simulation year ranges
./build-namelist -clm_demand list # List namelist variables including those you could
demand to be set.
./build-namelist -use_case list # List valid use-cases

New use-cases for build-namelist:

1850_control = Conditions to simulate 1850 land-use
2000_control = Conditions to simulate 2000 land-use
20thC_transient = Simulate transient land-use, aerosol and Nitrogen deposition
 from 1850 to 2005

New namelist items:

urban_hac = OFF, ON or ON_WASTEHEAT (default OFF) Flag for urban Heating
 and Air-Conditioning
 OFF = Building internal temperature is un-regulated.
 ON = Building internal temperature is bounded to reasonable range.
 ON_WASTEHEAT = Building internal temperature is bounded and resultant waste
 heat is given off.
urban_traffic = .true. or .false. Flag to include additional multiplicative
 factor of urban traffic to sensible heat flux.
 (default .false.)
fsnowoptics = filename file for snow/aerosol optical properties (required)
fsnowaging = filename file for snow aging parameters (required)

More information on the build-namelist options are given in the Section called Definition of Namelist
items and their default values in Chapter 1. and in CLM_BLDNML_OPTS.

More information on the build-namelist options are given in in the Section called Definition of Namelist
items and their default values in Chapter 1.

What are The New History Fields?

New history variables: (note watt vs. W in units, 26 vs. 76)

Name: BCDEP
Long-name: total BC deposition (dry+wet) from atmosphere
Units: kg/m^2/2/s

Name: BIOGENCO
Long-name: biogenic CO flux
Units: uGC/M2/H
<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C13_PRODUCT_CLOSS</td>
<td>C13 total carbon loss from wood product pools</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>DSTDEP</td>
<td>total dust deposition (dry+wet) from atmosphere</td>
<td>kg/m^2/s</td>
</tr>
<tr>
<td>EFLX_DYNBAL</td>
<td>dynamic land cover change conversion energy flux</td>
<td>W/m^2</td>
</tr>
<tr>
<td>FGR12</td>
<td>heat flux between soil layers 1 and 2</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>FSAT</td>
<td>fractional area with water table at surface</td>
<td>unitless</td>
</tr>
<tr>
<td>FSH_NODYNLNDUSE</td>
<td>sensible heat flux not including correction for land use change</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>GC_HEAT1</td>
<td>initial gridcell total heat content</td>
<td>J/m^2</td>
</tr>
<tr>
<td>GC_HEAT2</td>
<td>post land cover change total heat content</td>
<td>J/m^2</td>
</tr>
<tr>
<td>GC_ICE1</td>
<td>initial gridcell total ice content</td>
<td>mm/s</td>
</tr>
<tr>
<td>GC_ICE2</td>
<td>post land cover change total ice content</td>
<td>mm/s</td>
</tr>
<tr>
<td>GC_LIQ1</td>
<td>initial gridcell total liq content</td>
<td>mm</td>
</tr>
<tr>
<td>GC_LIQ2</td>
<td>initial gridcell total liq content</td>
<td>mm</td>
</tr>
<tr>
<td>H2OSNO_TOP</td>
<td>mass of snow in top snow layer</td>
<td>kg</td>
</tr>
<tr>
<td>HEAT_FROM_AC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What is new with CLM4 in CESM1.0.4 since previous public releases?

- **Long-name**: sensible heat flux put into canyon due to heat removed from air conditioning
 Units: watt/m²
- **Name**: HK
 Long-name: hydraulic conductivity
 Units: mm/s
 Active/Inactive: inactive
- **Name**: ISOPRENE
 Long-name: isoprene flux
 Units: uGC/M²/H
- **Name**: LAND_USE_FLUX
 Long-name: total C emitted from land cover conversion and wood product pools
 Units: gC/m²/s
- **Name**: LAND_UPTAKE
 Long-name: NEE minus LAND_USE_FLUX, negative for update
 Units: gC/m²/s
- **Name**: LWup
 Long-name: upwelling longwave radiation
 Units: watt/m²
 Active/Inactive: inactive
- **Name**: MONOTERP
 Long-name: monoterpen flux
 Units: uGC/M²/H
- **Name**: NBP
 Long-name: net biome production, includes fire, landuse, and harvest flux, positive for sink
 Units: gC/m²/s
- **Name**: OCDEP
 Long-name: total OC deposition (dry+wet) from atmosphere
 Units: kg/m²/s
- **Name**: OVOC
 Long-name: other VOC flux
 Units: uGC/M²/H
- **Name**: ORVOC
 Long-name: other reactive VOC flux
 Units: uGC/M²/H
- **Name**: PBOT
 Long-name: atmospheric pressure
 Units: Pa
- **Name**: PCO2
 Long-name: atmospheric partial pressure of CO₂
 Units: Pa
- **Name**: PRODUCT_CLOSS
 Long-name: total carbon loss from wood product pools
 Units: gC/m²/s
What is new with CLM4 in CESM1.0.4 since previous public releases?

Name: PRODUCT_NLOSS
Long-name: total N loss from wood product pools
Units: gN/m²/s

Name: Qair
Long-name: atmospheric specific humidity
Units: kg/kg
Active/Inactive: inactive

Name: Qanth
Long-name: anthropogenic heat flux
Units: watt/m²
Active/Inactive: inactive

Name: Qtau
Long-name: momentum flux
Units: kg/m/s²

Name: QFLX_LIQ_DYNBAL
Long-name: liq dynamic land cover change conversion runoff flux
Units: mm/s

Name: QFLX_ICE_DYNBAL
Long-name: ice dynamic land cover change conversion runoff flux
Units: mm/s

Name: QRUNOFF_NODYNLNDUSE
Long-name: total liquid runoff not including correction for land use change (does not include QSNWCPICE)
Units: mm/s

Name: QSNWCPICE
Long-name: excess snowfall due to snow capping
Units: mm/s

Name: QSNWCPICE_NODYNLNDUSE
Long-name: excess snowfall due to snow capping not including correction for land use change
Units: mm/s

Name: QSNWCPLIQ
Long-name: excess rainfall due to snow capping
Units: mm/s
Active/Inactive: inactive

Name: SMP
Long-name: soil matric potential
Units: mm
Active/Inactive: inactive

Name: SNOAERFRCL
Long-name: surface forcing of all aerosols in snow, averaged only when snow is present (land)
Units: watt/m²

Name: SNOAERFRCL
Long-name: surface forcing of all aerosols in snow (land)
What is new with CLM4 in CESM1.0.4 since previous public releases?

Units: watt/m^2

Name: SNOBCFRCL
Long-name: surface forcing of BC in snow (land)
Units: watt/m^2

Name: SNOBCMCL
Long-name: mass of BC in snow column
Units: kg/m2

Name: SNOBCMSL
Long-name: mass of BC in top snow layer
Units: kg/m2

Name: SNOdTdzL
Long-name: top snow layer temperature gradient (land)
Units: K/m

Name: SNODSTFRC2L
Long-name: surface forcing of dust in snow, averaged only when snow is present (land)
Units: watt/m^2

Name: SNODSTFRCCL
Long-name: surface forcing of dust in snow (land)
Units: watt/m^2

Name: SNODSTMCL
Long-name: mass of dust in snow column
Units: kg/m2

Name: SNODSTMSL
Long-name: mass of dust in top snow layer
Units: kg/m2

Name: SNOFSRND
Long-name: direct nir reflected solar radiation from snow
Units: watt/m^2
Active/Inactive: inactive

Name: SNOFSRNI
Long-name: diffuse nir reflected solar radiation from snow
Units: watt/m^2
Active/Inactive: inactive

Name: SNOFSRVD
Long-name: direct vis reflected solar radiation from snow
Units: watt/m^2
Active/Inactive: inactive

Name: SNOFSRVI
Long-name: diffuse vis reflected solar radiation from snow
Units: watt/m^2
Active/Inactive: inactive

Name: SNOFSDSND
Long-name: direct nir incident solar radiation on snow
What is new with CLM4 in CESM1.0.4 since previous public releases?

- **Units**: watt/m^2
- **Active/Inactive**: inactive
 - **Name**: SNOFSDSNI
 - **Long-name**: diffuse nir incident solar radiation on snow
 - **Units**: watt/m^2
 - **Active/Inactive**: inactive

- **Name**: SNOFSDSVD
 - **Long-name**: direct vis incident solar radiation on snow
 - **Units**: watt/m^2
 - **Active/Inactive**: inactive

- **Name**: SNOFSDSVI
 - **Long-name**: diffuse vis incident solar radiation on snow
 - **Units**: watt/m^2
 - **Active/Inactive**: inactive

- **Name**: SNOLIQFL
 - **Long-name**: top snow layer liquid water fraction (land)
 - **Units**: fraction
 - **Active/Inactive**: inactive

- **Name**: SNOOCMCL
 - **Long-name**: mass of OC in snow column
 - **Units**: kg/m2

- **Name**: SNOOCMSL
 - **Long-name**: mass of OC in top snow layer
 - **Units**: Kg/m2

- **Name**: SNOOCFRC2L
 - **Long-name**: surface forcing of OC in snow, averaged only when snow is present (land)
 - **Units**: watt/m^2

- **Name**: SNOOCFRCL
 - **Long-name**: surface forcing of OC in snow (land)
 - **Units**: watt/m^2

- **Name**: SNORDSL
 - **Long-name**: top snow layer effective grain radius
 - **Units**: m^-6
 - **Active/Inactive**: inactive

- **Name**: SNOTTOPL
 - **Long-name**: snow temperature (top layer)
 - **Units**: K/m
 - **Active/Inactive**: inactive

- **Name**: SWup
 - **Long-name**: upwelling shortwave radiation
 - **Units**: watt/m^2
 - **Active/Inactive**: inactive

- **Name**: TSOL_10CM
What is new with CLM4 in CESM1.0.4 since previous public releases?

Long-name: soil temperature in top 10cm of soil
Units: K

Name: URBAN_AC
Long-name: urban air conditioning flux
Units: watt/m^2

Name: URBAN_HEAT
Long-name: urban heating flux
Units: watt/m^2

Name: VOCFLXT
Long-name: total VOC flux into atmosphere
Units: uGC/M2/H

Name: Wind
Long-name: atmospheric wind velocity magnitude
Units: m/s
Active/Inactive: inactive

Name: WOOD_HARVESTC
Long-name: wood harvest (to product pools)
Units: gC/m^2/s

Name: WOOD_HARVEST
Long-name: wood harvest (to product pools)
Units: gN/m^2/s

History field name changes:

Old: ANNSUM_PLANT_NDEMAND
New: = ANNSUM_POTENTIAL_GPP

Old: ANNSUM_RETRANSN
New: = ANNMAX_RETRANSN

Old: C13_DWT_PROD10C_LOSS
New: = C13_PROD10C_LOSS

Old: C13_DWT_PROD100C_LOSS
New: = C13_PROD100C_LOSS

Old: C13_DWT_PROD10N_LOSS
New: = C13_PROD10N_LOSS

Old: C13_DWT_PROD100N_LOSS
New: = C13_PROD100N_LOSS

Old: C13_DWT_PROD100C_LOSS
New: = C13_PROD100C_LOSS

Old: DWT_PROD100N_LOSS
New: = PROD10N_LOSS

Old: DWT_PROD100N_LOSS
New: = PROD100N_LOSS

Old: DWT_PROD100C_LOSS
New: = PROD10C_LOSS

Old: DWT_PROD100C_LOSS
New: = PROD100C_LOSS
What is new with CLM4 in CESM1.0.4 since previous public releases?

New: = PROD100C_LOSS
Old: = HC
New: = HC
Old: = TEMPSUM_PLANT_NDEMAND
New: = TEMPSUM_POTENTIAL_GPP
Old: = TEMPSUM_RETRANSN
New: = TEMPMAX_RETRANSN

History field names deleted include: SNOWAGE, TSNOW, FMICR, FCO2, DMI, QFLX_SNOWCAP

Add new urban oriented _U, and _R (Urban and Rural) for the following history variables:
EFLX_LH_TOT, FGR, FIRA, FSH, FSM, Q2M, QRUNOFF, RH2M, SoilAlpha, TG, TREFMNAV,
TREFMXAV, and TSA (missing _R for SoilAlpha as the regular SoilAlpha is only defined for rural areas anyway)

Note: We are missing the Rural soil-alpha variable: SoilAlpha_R on purpose. SoilAlpha_U is only defined over pervious road, and missing everywhere else. SoilAlpha is defined only for rural areas.
Quickstart to using CLM4

Before working with CLM read the QuickStart Guide in the CESM1.0.4 Scripts User’s Guide (http://www.cesm.ucar.edu/models/cesm1.0/cesm). Once you are familiar with how to setup cases for any type of simulation with CESM you will want to direct your attention to the specifics of using CLM. For some of the details of setting up cases for CLM read the README and text files available from the "models/lnd/clm/doc" directory (see the "CLM Web pages" section for a link to the list of these files). Here are the important ones that you should be familiar with.

1. README (../README) file describing the directory structure.
2. Quickstart.userdatasets (../Quickstart.userdatasets) file describing how to use your own datasets in the model (also see the Section called Creating your own single-point/regional surface datasets in Chapter 5).
3. models/lnd/clm/doc/KnownBugs (../KnownBugs) file describing known problems in CLM4 (that we expect to eventually fix).
4. models/lnd/clm/doc/KnownLimitations (../KnownLimitations) file describing known limitations in CLM4 and workarounds that we do NOT expect to fix.

The IMPORTANT_NOTES file talks about important things for users to know about using the model scientifically. It content is given in the next chapter on "What is scientifically validated and functional in CLM4?".

The ChangeLog/ChangeSum talk about advances in different versions of CLM. The content of these files is largely explained in the previous chapter on "What is new with CLM4 in CESM1.0.4 since previous public releases?".

Note other directories have README files that explain different components and tools used when running CLM and are useful in understanding how those parts of the model work and should be consulted when using tools in those directories. For more details on configuring and customizing a case with CLM see Chapter 1.

The Quickstart.GUIDE (which can be found in models/lnd/clm/doc) is repeated here.

Quick-Start to Using cpl7 Scripts for clm4

Assumptions: You want to use bluefire with clm4 to do a clm simulation with data atmosphere and the latest atm forcing files and settings. You also want to cycle the atm data between 1948 to 2004 and you want to run at 1.9x2.5 degree resolution.

Process:

Create the case

cd scripts

./create_newcase -case <testcase> -mach bluefire -res f19_g16 -compset I4804

(. ./create_newcase -help -- to get help on the script)

TRUE

Configure the case

cd <testcase>

$EDITOR env_run.xml env_conf.xml # If you need to make changes (or use the xmlchange script)
Quickstart to using CLM4

./configure -case
(./configure -help -- to get help on the script)

Make any changes to the namelist
$EDITOR Buildconf/clm.buildnml_prestage.csh

Compile the code
./<testcase>.bluefire.build

Submit the run
./<testcase>.bluefire.submit

Information on Compsets:

"I" compsets are the ones with clm and datm7 without ice and ocean.
The latest "I" compsets use the new CLM_QIAN data with solar following
the cosine of solar zenith angle, precipitation constant, and other
variables linear interpolated in time (and with appropriate time-stamps on
the date). Some of the I compsets are:

<table>
<thead>
<tr>
<th>Name</th>
<th>short-name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_2000</td>
<td>I</td>
<td>CLM to simulate year=2000</td>
</tr>
<tr>
<td>I_1850</td>
<td>I1850</td>
<td>CLM to simulate year=1850</td>
</tr>
<tr>
<td>I_1948-2004</td>
<td>I4804</td>
<td>CLM running with atm data over 1948-2004</td>
</tr>
<tr>
<td>I_1850-2000</td>
<td>I18502000</td>
<td>CLM with transient PFT over 1850-2000</td>
</tr>
<tr>
<td>I_2000-CN</td>
<td>ICN</td>
<td>CLM with CN on to simulate year=2000</td>
</tr>
<tr>
<td>I_1850-CN</td>
<td>I1850CN</td>
<td>CLM with CN on to simulate year=1850</td>
</tr>
<tr>
<td>I_1948-2004-CN</td>
<td>I4804CN</td>
<td>CLM with CN on running with atm data over 1948-2004</td>
</tr>
<tr>
<td>I_1850-2000-CN</td>
<td>I18502000CN</td>
<td>CLM with CN on with transient PFT over 1850-2000</td>
</tr>
</tbody>
</table>

Automatically resubmitting jobs:

After doing a short simulation that you believe is correct

./xmlchange -file env_run.xml -id CONTINUE_RUN -val TRUE

Change RESUBMIT to number greater than 0, and CONTINUE_RUN to TRUE...

./<testcase>.bluefire.submit
What is scientifically validated and functional in CLM4?

In this section we go over what has been extensively tested and scientifically validated with CLM4, and maybe more importantly what has NOT been tested and may NOT be scientifically validated. You can use all features of CLM, but need to realize that some things haven’t been tested extensively or validated scientifically. When you use these features you may run into trouble doing so, and will need to do your own work to make sure the science is reasonable.

Standard Configuration and Namelist Options that are Validated

The standard version of the model is CLMCN at 1-degree horizontal resolution (0.9x1.25). This version has been scientifically validated with long simulations for: fully coupled simulations ("B" cases), coupled to atmosphere model CAM ("F" cases), and stand-alone CLM cases ("I" cases). We’ve also done both long simulations for 1850 conditions, and transient 20th century simulations from 1850 to 2005 (with transient land-use, Nitrogen and Aerosol deposition). There have also been transient future scenario simulations done for fully coupled cases for different "representative concentration pathway" (RCP) scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5). To a lesser extent there have also been simulations done at T31 and 2-degree horizontal resolution (1.9x2.5), and with CLMSP for these resolutions. As such we have provided appropriate 1-degree, 2-degree, and T31 initial condition datasets for these configurations. The irrigation and prognostic crop models were both validated at 2-degree resolution. The irrigation model for CLMSP for present day conditions for an "I" compset, and the prognostic crop model for present day conditions for a case coupled to the active land model, but using a data ocean model (an "F" compset). Other resolutions, configurations, and namelist options are less well tested or scientifically validated. The further you get away from the standard configurations and resolutions, the more likely you are to run into trouble, and/or need to scientifically validate your work.

In the sections below we go through configuration and/or namelist options or modes that the user should be especially wary of using. You are of course free to use these options, and you may find that they work functionally. Although in some cases you will find issues even with functionality of using them. If so you will need to test, debug and find solutions for these issues on your own. But in every case you will need to go through more extensive work to validate these options from a scientific standpoint.

Configure Modes NOT scientifically validated, documented, supported or, in some cases, even advised
to be used:

1. **C13**

 (-c13)
 The C13 mode for bgc=cn is NOT scientifically validated or documented and is NOT recommended for use.

2. **CASA**

 (-bgc casa)
 The bgc=casa mode is NOT scientifically validated or documented and is NOT recommended for use.

3. **SNICAR_FRC**

 (-snicar_frc)
 This mode is tested and functional, but is NOT constantly scientifically validated, and should be considered experimental.

Namelist options that should NOT be exercised:

Build-Namelist options that should NOT be exercised:

1. **-irrig with -bgc cn** We have only run the irrigation model with CLMSP (i.e. without the CN model). We recommend that if you want to run the irrigation model with CN, that you do a spinup. But, more than that you may need to make adjustments to `irrig_factor` in `models/1nd/clm/src/biogeophys/CanopyFluxesMod.F90`. See the notes on this in the description of the irrigation model in the Technical Descriptions of the Interactive Crop Management and Interactive Irrigation Models (http://www.cesm.ucar.edu/models/cesm1.0//CLMcropANDirrigTechDescriptions.pdf).

2. **-irrig with -crop on** Irrigation doesn’t work with the prognostic crop model. Irrigation is only applied to generic crop currently, which negates it’s practical usage. We also have a known problem when both are on (see bug 1326 in the `models/1nd/clm/doc/KnownBugs` file). If you try to run in this mode, the CLM build-namelist will return with an error.

3. **-lnd_res**: Fine-mesh mode, functional, but experimental

4. **-rcp**: Representative Concentration Pathway (RCP) for future scenarios, functional for limited resolutions, but experimental

5. **-datm_***: All options that start with "datm_" they are only used for CLM stand-alone testing.

6. **-drv_***: All options that start with "drv_" they are only used for CLM stand-alone testing.
Namelist items that should NOT be exercised:

1. *casa namelist options*: lnpp, lalloc, q10, spunup, and fcpool CASA has NOT been scientifically validated in CLM4.
2. *fine-mesh namelist options*: flndtopo, and fatmtopo. These options are functional but experimental. See the -Ind_res option above.
3. *suplnitro='ALL'*: The suplnitro namelist option to the CN Biogeochemistry model supplies unlimited nitrogen and therefore vegetation is over-productive in this mode.
4. *urban_traffic*: Not currently functional
What are the UNIX utilities required to use CLM?

Running the CLM requires a suite of UNIX utilities and programs and you should make sure you have all of these available before trying to go forward with using it. If you are missing one of these you should contact the systems administrator for the machine you wish to run on and make sure they are installed.

FORTRAN-90 compiler
"C" compiler
GNU make
UNIX csh and tcsh shells
UNIX sh shell
UNIX bash shell
UNIX awk
UNIX sed
NetCDF library
MPI Library
"C" pre-processor
Perl
Autoconf
m4 macro processor
Parallel NetCDF (optional)
NCL (for some of the offline tools for creating/modifying CLM input datasets see Chapter 2 for more information on NCL)
Python (optional, needed for PTCLM)
xsltproc, docbook and docbook utilities (optional, needed to build the Users-Guide)
protex and latex2html (optional, needed to build the Code-Reference Guide)
Other resources to get help from

In addition to this users-guide there are several other resources that are available to help you use CLM4. The first one is the CESM User’s-Guide, which documents the entire process of creating cases with CESM. The next is the CESM bulletin board which is a web-site for exchanging information between users of CESM. There are also CLM web-pages specific for CLM, and finally there is an email address to report bugs that you find in CESM1.0.

The CESM User’s-Guide

CLM4 in CESM1.0.4 is always run from within the standard CESM1.0.4 build and run scripts. Therefore, the user of CLM4 should familiarize themselves with the CESM1.0.4 scripts and understand how to work with them. User’s-Guide documentation on the CESM1.0.4 scripts are available from the following web-page. The purpose of this CLM4 in CESM1.0.4 User’s Guide is to give the CLM4 user more complete details on how to work with CLM and the set of tools that support CLM, as well as to give examples that are unique to the use of CLM. However, the CESM1.0.4 Scripts User’s-Guide remains the primary source to get detailed information on how to build and run the CESM system.

CESM1.0 Scripts User’s-Guide (http://www.cesm.ucar.edu/models/cesm1.0/cesm)

The CESM Bulletin Board

There is a rich and diverse set of people that use the CESM, and often it is useful to be in contact with others to get help in solving problems or trying something new. To facilitate this we have an online Bulletin Board for questions on the CESM. There are also different sections in the Bulletin Board for the different component models or for different topics.

CESM Online Bulletin Board (http://bb.cgd.ucar.edu/)

The CLM web pages

The main CLM web page contains information on the CLM, it’s history, developers, as well as downloads for previous model versions. There are also documentation text files in the models/lnd/clm/doc directory that give some quick information on using CLM.

CLM web page (http://www.cgd.ucar.edu/tss/clm/)
CLM Documentation Text Files (./)

Also note that several of the XML database files can be viewed in a web browser to get a nice table of namelist options, namelist defaults, or compsets. Simply view them as a local file and bring up one of the following files:
models/lnd/clm/bld/namelist_files/namelist_definition.xml (.../bld/namelist_files/namelist_definition.xml) -- definition of models/lnd/clm/bld/namelist_files/namelist_defaults_clm.xml (.../bld/namelist_files/namelist_defaults_clm.xml) -- default
scripts/ccsm_utils/Case.template/config_definition.xml (../../../scripts/ccsm_utils/Case.template/config_definition.xml) -- definition of all env_*.xml
scripts/ccsm_utils/Case.template/config_compsets.xml (../../../scripts/ccsm_utils/Case.template/config_compsets.xml) -- definition of all the compsets.
models/lnd/clm/bld/namelist_files/history_fields.xml (../bld/namelist_files/history_fields.xml) -- definition of CLM history fields.

Reporting bugs in CLM4

If you have any problems, additional questions, bug reports, or any other feedback, please send an email to <cesmhelp@cgd.ucar.edu>. If you find bad, wrong, or misleading information in this users guide send an email to <erik@ucar.edu>. The current list of known issues for CLM4 in CESM1.0.4 is in the models/lnd/clm/doc/KnownBugs (KnownBugs) file, and the list of issues for CESM1.0.4 is at...
http://www.cesm.ucar.edu/models/cesm1.0/tags/cesm1_0_4/#PROBLEMS
(http://www.cesm.ucar.edu/models/cesm1.0/tags/cesm1_0_4/#PROBLEMS).
Chapter 1. How to customize the configuration for a case with CLM

The CESM User’s Guide (http://www.cesm.ucar.edu/models/cesm1.0/cesm) gives you the details on how to setup, configure, build, and run a case. That is the document to give you the details on using the CESM scripts. The purpose of this document is to give you the details when using CESM with CLM on how to customize and use advanced features in CLM. You should be familiar with the CESM User’s Guide and how to setup cases with CESM1.0.4 before referring to this document.

In this chapter we deal with three different ways of customizing a case: Choosing a compset, Customizing Configuration options, and customizing the CLM Namelist. There are many different compsets that use CLM and many are setup to enable special features of CLM from the start. So the first thing you want to be familiar with are the different options in the compsets. The next section shows the different options for customizing the configuration options for CLM. Here we introduce the CLM configure and build-namelist scripts and how using the options in env_conf.xml you can customize the configuration and the initial namelist. The final section tells you about the CLM namelist and how you can customize the namelist once you have run "configure -case" and have an initial namelist in BuildConf/clm.buildnml.csh. You can also use env_conf.xml options to change your namelist as well, before "configure -case" is run.

Choosing a compset using CLM

When setting up a new case one of the first choices to make is which "component set" (or compset) to use. The compset refers to which component models are used as well as specific settings for them. We label the different types of compsets with a different letter of the alphabet from "A" (for all data model) to "X" (for all dead model). The compsets of interest when working with CLM are the "I" compsets (which contain CLM with a data atmosphere model and a stub ocean, and stub sea-ice models), "E" and "F" compsets (which contain CLM with the active atmosphere model (CAM), prescribed sea-ice model, and a data ocean model), and "B" compsets which have all active components. Below we go into details on the "I" compsets which emphasize CLM as the only active model, and just mention the two other categories.

When working with CLM you usually want to start with a relevant "I" compset before moving to the more complex cases that involve other active model components. The "I" compsets can exercise CLM in a way that is similar to the coupled modes, but with much lower computational cost and faster turnaround times.

Compsets coupled to data atmosphere and stub ocean/sea-ice ("I" compsets)

1. I_2000(I) Active land model with QIAN atm input data for 1972-2004 and Satellite phenology (SP), CO2 level and Aerosol deposition for 2000
2. I_1850(1850) Active land model with QIAN atm input data for 1948 to 1972 and Satellite phenology (SP), CO2 level and Aerosol deposition for 1850
Chapter 1. How to customize the configuration for a case with CLM

3. I_1850_CN(I1850CN) Active land model with QIAN atm input data for 1948 to 1972 and CN (Carbon Nitrogen) biogeochemistry, CO2 level and Aerosol deposition for 1850

4. I_1850_SPINUP_3HrWx_CN(I1850SPINUPCN) Active land model with BCN CPLHIST 3-hourly weather forcing data and half-hourly solar for 1850 spinup of CN (Carbon Nitrogen) biogeochemistry, CO2 level and Aerosol deposition for 1850

5. I_1850-2000(I20TR) Active land model with QIAN atm input data for 1948 to 1972 and transient Satellite phenology (SP), and Aerosol deposition from 1850 to 2000 and 2000 CO2 level

6. I_1850-2000_CN(I20TRCN) Active land model with QIAN atm input data for 1948 to 1972 and transient CN, Aerosol dep from 1850 to 2000 and 2000 CO2 level

8. I_1948-2004_CN(I4804CN) Active land model with QIAN atm input data for 1948 to 2004 and CN (Carbon Nitrogen) biogeochemistry, CO2 level and Aerosol deposition for 2000

10. I_TEST_2003_CN(ICNTEST) Test active land model with QIAN atm input data for just 2002-2003 and CN (Carbon-Nitrogen), CO2 level and Aerosol deposition for 2000 (BECAUSE OF THE SHORT FORCING PERIOD -- DO NOT USE FOR LONG SIMULATIONS)

12. I_1850_GLIC(I1850G) Active land and glacier model with QIAN atm input data for 1948 to 1972 and Satellite phenology (SP), CO2 level and Aerosol deposition for 1850

13. I_1850_CN_GLIC(I1850GCN) Active land and glacier model with QIAN atm input data for 1948 to 1972 and CN (Carbon Nitrogen) biogeochemistry, CO2 level and Aerosol deposition for 1850

14. I_1850-2000_GLIC(I20TRG) Active land and glacier model with QIAN atm input data for 1948 to 1972 and transient Satellite phenology (SP), and Aerosol deposition from 1850 to 2000 and 2000 CO2 level

15. I_1850-2000_CN_GLIC(I20TRGCN) Active land and glacier model with QIAN atm input data for 1948 to 1972 and transient CN, Aerosol dep from 1850 to 2000 and 2000 CO2 level

17. I_RCP2.6_CN_GLIC(IRCP26G) Active land and glacier model, RCP2.6 future scenario, with CN in CLM, QIAN atm input data for 1972 to 2004, 2000 CO2 level

18. I_RCP4.5_CN_GLIC(IRCP45G) Active land and glacier model, RCP4.5 future scenario, with CN in CLM, QIAN atm input data for 1972 to 2004, 2000 CO2 level

19. I_RCP6.0_CN_GLIC(IRCP60G) Active land and glacier model, RCP6.0 future scenario, with CN in CLM, QIAN atm input data for 1972 to 2004, 2000 CO2 level

20. I_RCP8.5_CN_GLIC(IRCP85G) Active land and glacier model, RCP8.5 future scenario, with CN in CLM, QIAN atm input data for 1972 to 2004, 2000 CO2 level

21. I_RCP2.6_CN(IRCP26G) Active land model, RCP2.6 future scenario, with CN in CLM, QIAN atm input data for 1972 to 2004, 2000 CO2 level
Chapter 1. How to customize the configuration for a case with CLM

22. I_RCP4.5_CN (IRCP45CN) Active land model, RCP4.5 future scenario, with CN in CLM, QIAN atm input data for 1972 to 2004, 2000 CO2 level
23. I_RCP6.0_CN (IRCP60CN) Active land model, RCP6.0 future scenario, with CN in CLM, QIAN atm input data for 1972 to 2004, 2000 CO2 level
24. I_RCP8.5_CN (IRCP85CN) Active land model, RCP8.5 future scenario, with CN in CLM, QIAN atm input data for 1972 to 2004, 2000 CO2 level

Compsets coupled to active atmosphere with data ocean

CAM compsets are compsets that start with "E" or "F" in the name. They are described more fully in the scripts documentation or the CAM documentation. "E" compsets have a slab ocean model while "F" compsets have a data ocean model.

Fully coupled compsets with fully active ocean, sea-ice, and atmosphere

Fully coupled compsets are compsets that start with "B" in the name. They are described more fully in the scripts documentation.

Conclusion to choosing a compset

We’ve introduced the basic type of compsets that use CLM and given some further details for the "standalone CLM" (or "I") compsets. The config_compsets.xml (../../../../../scripts/ccsm_utils/Case.template/config_compsets.xml) lists all of the compsets and gives a full description of each of them. In the next section we look into customizing the configure time options for compsets using CLM.

Customizing the CLM configuration

The "Creating a Case" section of the CESM1.0.4 Scripts User’s-Guide (http://www.cesm.ucar.edu/models/cesm1.0/cesm) gives instructions on creating a case. What is of interest here is how to customize your use of CLM for the case that you created. In this section we discuss how to customize your case before the first step -- the configure -case” step is done. In the next section we will discuss how to customize your CLM namelist after "configure -case" has already been done.

For CLM when "configure -case" is called there are two steps that take place:
Chapter 1. How to customize the configuration for a case with CLM

1. The CLM "configure" script is called to setup the build-time configuration for CLM (more information on configure is given in the Section called More information on the CLM configure script).

2. The CLM "build-namelist" script is called to generate the initial run-time namelist for CLM (more information on build-namelist is given below in the Section called Definition of Namelist items and their default values).

When customizing your case at the configure step you are able to modify the process by effecting either one or both of these steps. The CLM "configure" and "build-namelist" scripts are both available in the "models/lnd/clm/bld" directory in the distribution. Both of these scripts have a "-help" option that is useful to examine to see what types of options you can give either of them.

There are five different types of customization for the configuration that we will discuss: CESM1.0 CLM configuration items, Configure time User Namelist, other noteworthy CESM configuration items, the CLM configure script options, and the CLM build-namelist script options.

Information on all of the script, configuration, build and run items is found under scripts/ccsm_utils/Case.template in the config_definition.xml file.

CLM Script configuration items

Below we list each of the CESM configuration items that are specific to CLM. All of these are available in your: env_conf.xml file.

- CLM_CONFIG_OPTS
- CLM_BLDNML_OPTS
- CLM_NAMELIST_OPTS
- CLM_FORCE_COLDSTART
- CLM_NML_USE_CASE
- CLM_PT1_NAME
- CLM_USRDAT_NAME
- CLM_CO2_TYPE

For the precedence of the different options to build-namelist see the section on precedence below.

The first item CLM_CONFIG_OPTS has to do with customizing the CLM configuration options for your case, the rest all have to do with generating the initial namelist.

CLM_CONFIG_OPTS

The option CLM_CONFIG_OPTS is all about passing command line arguments to the CLM configure script. It is important to note that some compsets, may already put a value into the CLM_CONFIG_OPTS variable. You can still add more options to your CLM_CONFIG_OPTS but make sure you add to what is already there rather than replacing it. Hence, we recommend using the "-append" option to the xmlchange script. In the Section called More information on the CLM configure script below we will go into more details on options that can be customized in the CLM "configure" script. It’s also important to note that the CLM template may already invoke certain CLM configure options and as such those command line options are NOT going to be available to change at this step (nor would you want to change them). The options to configure are given with the "-help" option which is given in the Section called More information on the CLM configure script.
Chapter 1. How to customize the configuration for a case with CLM

CLM_NML_USE_CASE

CLM_NML_USE_CASE is used to set a particular set of conditions that set multiple namelist items, all centering around a particular usage of the model. To list the valid options do the following:

> cd models/land/clm/doc
> ../bld/build-namelist -use_case list

The output of the above command is:

```
build-namelist - use cases: 1850-2100_rcp2.6_glacierMEC_transient 1850-2100_rcp2.6_transient \
1850-2100_rcp4.5_glacierMEC_transient 1850-2100_rcp4.5_transient \
1850-2100_rcp6_glacierMEC_transient 1850-2100_rcp6_transient \
1850-2100_rcp8.5_glacierMEC_transient 1850-2100_rcp8.5_transient 1850_control \
1850_glacierMEC_control 2000-2100_rcp8.5_transient 2000_control 2000_glacierMEC_control \
20thC_glacierMEC_transient 20thC_transient glacierMEC_pd pergro0_pd pergro_pd stdurbpt_pd

Use cases are:

1850-2100_rcp2.6_glacierMEC_transient = Simulate transient land-use, and aerosol deposition changes with historical data from 1850 to 2005 and then with the RCP2.6 scenario from IMAGE
1850-2100_rcp2.6_transient = Simulate transient land-use, and aerosol deposition changes with historical data from 1850 to 2005 and then with the RCP2.6 scenario from IMAGE
1850-2100_rcp4.5_glacierMEC_transient = Simulate transient land-use, and aerosol deposition changes with historical data from 1850 to 2005 and then with the RCP4.5 scenario from MINICAM
1850-2100_rcp4.5_transient = Simulate transient land-use, and aerosol deposition changes with historical data from 1850 to 2005 and then with the RCP4.5 scenario from MINICAM
1850-2100_rcp6_glacierMEC_transient = Simulate transient land-use, and aerosol deposition changes with historical data from 1850 to 2005 and then with the RCP6 scenario from AIM
1850-2100_rcp6_transient = Simulate transient land-use, and aerosol deposition changes with historical data from 1850 to 2005 and then with the RCP6 scenario from AIM
1850-2100_rcp8.5_glacierMEC_transient = Simulate transient land-use, and aerosol deposition changes with historical data from 1850 to 2005 and then with the RCP8.5 scenario from MESSAGE
1850-2100_rcp8.5_transient = Simulate transient land-use, and aerosol deposition changes with historical data from 1850 to 2005 and then with the RCP8.5 scenario from MESSAGE
1850_control = Conditions to simulate 1850 land-use
1850_glacierMEC_control = Running an IG case for 1850 conditions with the ice sheet model glimmer
2000-2100_rcp8.5_transient = Simulate transient land-use, and aerosol deposition changes with historical data from 2000 to 2005 and then with the RCP8.5 scenario from MESSAGE
2000_control = Conditions to simulate 2000 land-use
2000_glacierMEC_control = Running an IG case for 2000 conditions with the ice sheet model glimmer
20thC_glacierMEC_transient = Simulate transient land-use, and aerosol deposition changes from 1850 to 2005
20thC_transient = Simulate transient land-use, and aerosol deposition changes from 1850 to 2005
```

Note: See the the Section called Precedence of Options section for the precedence of this option relative to the others.
Chapter 1. How to customize the configuration for a case with CLM

CLM_BLDNML_OPTS

The option CLM_BLDNML_OPTS is for passing options to the CLM "build-namelist" script. As with the "configure" script the CLM template may already invoke certain options and as such those options will NOT be available to be set here. The best way to see what options can be sent to the "build-namelist" script is to do

```bash
> cd models/lnd/clm/bld
> ./build-namelist -help
```

Here is the output from the above.

```
.
```

The CLM template already sets the resolution and mask as well as the configure file, the start-type, the co2_ppmv, glc_grid, rtm_tstep, and rtm_res, and defines an input namelist and namelist input file, and it normally sets either "-ignore_ic_year" or "-ignore_ic_date". Also many of the options are designed solely for CLM stand-alone testing and hence should NOT be used (any of the options starting with a "datm_" or "drv_" prefix. Hence there are then only five different options that could be set:

1. -irrig
2. -lnd_res
3. -sim_year
4. -rcp
5. -clm_demand
6. -verbose

When "-irrig" is used build-namelist will try to find surface datasets that have the irrigation model enabled.

"-lnd_res" is used to run CLM in fine-mesh mode at a higher resolution than the atmospheric model. This can be useful to get higher resolution from the land model, but saving computer time by running the more expensive atmospheric model at a lower resolution. To get a list of valid resolutions to run at do the following:

```bash
> cd models/lnd/clm/doc
> ../bld/build-namelist -lnd_res list
```

Caution

The fine-mesh mode is considered experimental, and you may run into problems when you use it. Another option is to use the CESM level "tri-grid" capability to run the land model on a different grid than the atmospheric model. Read the CESM User’s-Guide to learn how to do this.

Note: See the the Section called Precedence of Options section for the precedence of this option relative to the others.
"-clm_demand" asks the build-namelist step to require that the list of variables entered be set. Typically, this is used to require that optional filenames be used and ensure they are set before continuing. For example, you may want to require that fpftdyn be set to get dynamically changing vegetation types. To do this you would do the following.

```
> ./xmlchange -file env_conf.xml -id CLM_BLDNML_OPTS -val "-clm_demand fpftdyn"
```

To see a list of valid variables that you could set do this:

```
> cd models/lnd/clm/doc
> ../../../build-namelist -clm_demand list
```

Important: Using a 20th-Century transient compset or the 20thC_transient use-case using CLM_NML_USE_CASE would set this as well, but would also use dynamic nitrogen and aerosol deposition files, so using -clm_demand would be a way to get just dynamic vegetation types and NOT the other files as well.

"-sim_year" is used to set the simulation year you want the data-sets to simulate conditions for in the input datasets. The simulation "year" can also be a range of years in order to do simulations with changes in the dataset values as the simulation progresses. To list the valid options do the following:

```
> cd models/lnd/clm/doc
> ../../../build-namelist -sim_year list
```

"-rcp" is used to set the representative concentration pathway for the future scenarios you want the data-sets to simulate conditions for, in the input datasets. To list the valid options do the following:

```
> cd models/lnd/clm/doc
> ../../../build-namelist -rcp list
```

CLM_NAMELIST_OPTS

The option CLM_NAMELIST_OPTS is for passing namelist items into the "clm_inparm" namelist. Any items that are set in CLM_NAMELIST_OPTS will be set in your namelist after "configure -case" is done.

Important: For character namelist items you need to use "'apos;" as quotes for strings so that the scripts don't get confused with other quotes they use.

Example, you want to set hist_dov2xy to .false. so that you get vector output to your history files. To do so edit env_conf.xml and add a setting for hist_dov2xy. So do the following:

```
> ./xmlchange -file env_conf.xml -id CLM_NAMELIST_OPTS -val hist_dov2xy=.false.
```

Example, you want to set hist_fincl1 to add the variable 'HK' to your history files. To do so edit env_conf.xml and add a setting for hist_fincl1. So do the following:
Chapter 1. How to customize the configuration for a case with CLM

> ./xmlchange -file env_conf.xml -id CLM_NAMELIST_OPTS -val "hist_fincl1='HK'"

For a list of the history fields available see CLM History Fields (.././bld/namelist_files/history_fields.xml).

Note: See the the Section called Precedence of Options section for the precedence of this option relative to the others.

CLM_CO2_TYPE

CLM_CO2_TYPE sets the type of input CO$_2$ for either "constant", "diagnostic" or prognostic". If "constant" the value from CCSM_CO2_PPMV will be used. If "diagnostic" or "prognostic" the values MUST be sent from the atmosphere model. For more information on how to send CO$_2$ from the data atmosphere model see the Section called Running stand-alone CLM with transient historical CO$_2$ concentration in Chapter 4.

CLM_FORCE_COLDSTART

CLM_FORCE_COLDSTART when set to on, requires that your simulation do a cold start from arbitrary initial conditions. If this is NOT set, it will use an initial condition file if it can find an appropriate one, and otherwise do a cold start. CLM_FORCE_COLDSTART is a good way to ensure that you are doing a cold start if that is what you want to do.

CLM_PT1_NAME

CLM_PT1_NAME is used ONLY for a pt1_pt1 resolution simulation to set the name of the single-point files to use. To see a list of the valid resolutions do this:

> cd models/lnd/clm/doc
> ../bld/build-namelist -res list

The output of the above command is:

```
build-namelist - valid values for res (Horizontal resolutions
Note: 0.5x0.5 and 0.33x0.33 are only used for CLM tools):
Values: default 512x1024 128x256 64x128 48x96 32x64 8x16 94x192 0.23x0.31 \ 
  0.47x0.63 0.9x1.25 1.9x1.5 2.5x3.33 4x5 10x15 5x5_amazon 1x1_tropiccl 1x1_canadaRX \ 
  1x1_vancouverCAN 1x1_mexicocityMEX 1x1_asphaltJungleN 1x1_brazil 1x1_urbanc_alpha 1x1_novaIA \ 
  1x1_smallvilleIA 0.5x0.5 0.33x0.33
Default = 1.9x2.5
(Note: resolution and mask and other settings may influence what the default is)
```

the valid resolutions that can be used with CLM_PT1_NAME are the ones that have city or nation names such as: 5x5_amazon, 1x1_vancouverCAN 1x1_mexicocityMEX, or 1x1_brazil. The "1x1_" prefix means the file is for a single-point, while "5x5_" prefix means it’s for a region of five points in latitude by five points in longitude. Both regional and single point datasets can be used for CLM_PT1_NAME. If you create your own datasets you can also use CLM_PT1_NAME along with

CLM_USRDAT_NAME

(documented below), setting CLM_PT1_NAME to the value in CLM_USRDAT_NAME so that your datasets are used rather than the standard ones.o
CLM_USRDAT_NAME

CLM_USRDAT_NAME provides a way to enter your own datasets into the initial namelist setup at "configure -case". The files you create must be named with specific naming conventions outlined in: the Section called Creating your own single-point/regional surface datasets in Chapter 5. To see what the expected names of the files are, use the queryDefaultNamelist.pl to see what the names will need to be. For example if your CLM_USRDAT_NAME will be "1x1_boulderCO", with a "navy" land-mask, constant simulation year range, for 1850, the following will list what your filenames should be:

```bash
> cd models/lnd/clm/bld
> queryDefaultNamelist.pl -usrname "1x1_boulderCO" -options \"mask=navy,sim_year=1850, sim_year_range="constant" \"-csmdata $CSMDATA
```

An example of using CLM_USRDAT_NAME for a simulation is given in Example 5-5.

Note: See the the Section called Precedence of Options section for the precedence of this option relative to the others.

Configure time User Namelist

CLM_NAMELIST_OPTS as described above allows you to set any extra namelist items you would like to appear in your namelist after first configured. However, it only allows you a single line to enter namelist items, and strings must be quoted with ' which is a bit awkward. If you have a long list of namelist items you want to set (such as a long list of history fields) a convenient way to do it is to create a `user_nl_clm` that contains just the list of namelist variables you want to add to your initial namelist.

The `user_nl_clm` will only be used when configure is run, so if you change it after configure -- it won’t change anything. The file needs to be in valid FORTRAN namelist format, and the configure step will abort if there are syntax errors. It merely needs to be named correctly `user_nl_clm` and placed in your case directory (where your other `env_*.xml` files are). The namelist name actually doesn’t have to be valid, but all the variable names must be. Here’s an example `user_nl_clm` namelist that sets a bunch of history file related items, to create output history files monthly, daily, every six and 1 hours.

Example 1-1. Example user_nl_clm namelist file

```plaintext
&clmexp
 hist_fincl2 = "TG", 'TROT', 'FIRE', 'FIRA', 'FLDS', 'F2DS',
 'F3R', 'FSA', 'FCEV', 'FSS', 'FGE', 'TISO',
 'ERRISO', 'BUILDHEAT', 'SABV', 'SABC',
 'FSSDVD', 'FSSDND', 'FSSDVT', 'FSSDNI',
 'FSDVD', 'FSIZE', 'FSNVT', 'FSNHI',
 'TSA', 'TCTH', 'FCEV', 'QBOT', 'HRD', 'HRD2OSO',
 'HRD2OSI', 'SOILLIQ', 'SOILICE',
 'TSA_U', 'TSA_R',
 'TREFMKAV_U', 'TREFMKAV_R',
 'TREFMKAV_U', 'TREFMKAV_R',
 'TG_U', 'TG_R',
 'RZM_U', 'RZM_R',
 'GRNNOFF_U', 'GRNNOFF_R',
 'SoolAlpha_U',
 'Qanct', 'SWup', 'LWup', 'URBAN_AC', 'URBAN_HEAT',
 hist_fincl3 = "TG", 'TSA', 'SWup', 'LWup', 'URBAN_AC', 'URBAN_HEAT',
 'GRNNOFF_U', "GRNNOFF_R",
 'SoolAlpha_U',
 'Qanct', 'SWup', 'LWup', 'URBAN_AC', 'URBAN_HEAT',
```

9
Chapter 1. How to customize the configuration for a case with CLM

Note: See the the Section called Precedence of Options section for the precedence of this option relative to the others.

Note: In the above example we use an invalid namelist name &clmexp -- but it works anyway because the CLM build-namelist knows the namelist that specific variable names belong to, and it puts them there.

Obviously, all of this would be difficult to put in the CLM_NAMELIST_OPTS variable, especially having to put ‘ around all the character strings. For more information on the namelist variables being set here and what they mean, see the section on CLM namelists below, as well as the namelist definition that gives details on each variable.

Precedence of Options

Note: The precedence for setting the values of namelist variables with the different env_conf options is (highest to lowest):

1. Namelist values set by specific command-line options, like, -d, -sim_year (i.e. CLM_BLDNML_OPTS env_conf variable)
2. Values set on the command-line using the -namelist option, (i.e. CLM_NAMELIST_OPTS env_conf variable)
3. Values read from the file specified by -infile, (i.e. user_nl_clm file)
4. Datasets from the -clm_usr_name option, (i.e. CLM_USRDAT_NAME env_conf variable)
5. Values set from a use-case scenario, e.g., -use_case (i.e. CLM_NML_USE_CASE env_conf variable)
6. Values from the namelist defaults file.

Thus a setting in CLM_BLDNML_OPTS will override a setting for the same thing given in a use case with CLM_NML_USE_CASE. Likewise, a setting in CLM_NAMELIST_OPTS will override a setting in user_nl_clm.
Chapter 1. How to customize the configuration for a case with CLM

Setting Your Initial Conditions File

Especially with CLMCN starting from initial conditions is very important. Even with CLMSP it takes many simulation years to get the model fully spunup. There are a couple different ways to provide an initial condition file.

the Section called Doing a hybrid simulation to provide initial conditions
the Section called Doing a branch simulation to provide initial conditions
the Section called Providing a finidat file in your user_nl_clm file
the Section called Adding a finidat file to the XML database

Note: Your initial condition file MUST agree with the surface dataset you are using to run the simulation. If the two files do NOT agree you will get a run-time about a mis-match in PFT weights, or in the number of PFT's or columns. To get around this you'll need to use the Section called Using interpinic to interpolate initial conditions to different resolutions in Chapter 2 to interpolate your initial condition dataset.

Doing a hybrid simulation to provide initial conditions

The first option is to setup a hybrid simulation and give a RUN_REFCLASS and RUN_REFDATE to specify the reference case simulation name to use. When you setup most cases, at the standard resolutions of "f09" or "f19" it will already do this for you. For example, if you run an "I2000CN" compset at "f09_g16" resolution the following settings will already be done for you.

`.xmlchange -file env_conf.xml -id RUN_TYPE -val hybrid
`.xmlchange -file env_conf.xml -id RUN_REFCLASS -val I2000CN_f09_g16_c100503
`.xmlchange -file env_conf.xml -id RUN_REFDATE -val 0001-01-01
`.xmlchange -file env_conf.xml -id GET_REFCLASS -val TRUE

Setting the GET_REFCLASS option to TRUE means it will copy the files from the: $DIN_LOC_ROOT/ccsm4_init/I2000CN_f09_g16_c100503/0001-01-01 directory. Note, that the RUN_REFCLASS and RUN_REFDATE variables are expanded to get the directory name above. If you do NOT set GET_REFCLASS to TRUE then you will need to have placed the file in your run directory yourself. In either case, the file is expected to be named: $RUN_REFCLASS.clm2.r.$RUN_REFDATE-00000.nc with the variables expanded of course.

Doing a branch simulation to provide initial conditions

The setup for running a branch simulation is essentially the same as for a hybrid. With the exception of setting RUN_TYPE to branch rather than hybrid. A branch simulation runs the case essentially as restarting from it’s place before to exactly reproduce it. While a hybrid simulation allows you to change namelist items, and use a different code base that may have fewer fields on it than a full restart file. The GET_REFCLASS works similarly for a branch case as for a hybrid.
Chapter 1. How to customize the configuration for a case with CLM

Providing a finidat file in your user_nl_clm file

Setting up a branch or hybrid simulation requires the initial condition file to follow a standard naming convention, and a standard input directory if you use the GET_REFCASE option. If you want to name your file willy nilly and place it anywhere, you can set it in your user_nl_clm file as in this example.

```
&clm_inparm
  finidat = '/glade/home/$USER/myinitdata/clm1_I1850CN_f09_g16_0182-01-01.c120329.nc'
/
```

Note, if you provide an initial condition file -- you can NOT set CLM_FORCE_COLDSTART to TRUE.

Adding a finidat file to the XML database

Like other datasets, if you want to use a given initial condition file to be used for all (or most of) your cases you’ll want to put it in the XML database so it will be used by default. The initial condition files, are resolution dependent, and dependent on the number of PFT’s and other variables such as GLC_NEC or if irrigation is on or off. See Chapter 3 for more information on this.

Other noteworthy configuration items

For running "I" cases there are several other noteworthy configuration items that you may want to work with. Most of these involve settings for the DATM, but one CCSM_CO2_PPMV applies to all models. If you are running an B, E, or F case that doesn’t use the DATM obviously the DATM_* settings will not be used. All of the settings below are in your env_conf.xml file

```
CCSM_CO2_PPMV
CCSM_VOC
DATM_MODE
DATM_PRESAERO
DATM_CLMNCEP_YR_ALIGN
DATM_CLMNCEP_YR_START
DATM_CLMNCEP_YR_END
DATM_CPL_CASE
DATM_CPL_YR_ALIGN
DATM_CPL_YR_START
DATM_CPL_YR_END
CCSM_CO2_PPMV
```

CCSM_CO2_PPMV sets the mixing ratio of CO₂ in parts per million by volume for ALL CESM components to use. Note that most compsets already set this value to something reasonable. Also note that some compsets may tell the atmosphere model to override this value with either historic or ramped values. If the CCSM_BGC variable is set to something other than "none" the atmosphere model will determine CO₂, and CLM will listen and use what the atmosphere sends it. On the CLM side the namelist item `co2_type` tells CLM to use the value sent from the atmosphere rather than a value set on it’s own namelist.
Chapter 1. How to customize the configuration for a case with CLM

CCSM_VOC

CCSM_VOC enables passing of the Volatile Organic Compounds (VOC) from CLM to the atmospheric model. This of course is only important if the atmosphere model is a fully active model that can use these fields in it’s chemistry calculations.

DATM_MODE

DATM_MODE sets the mode that the DATM model should run in this determines how data is handled as well as what the source of the data will be. Many of the modes are setup specifically to be used for ocean and/or sea-ice modeling. The modes that are designed for use by CLM are:

- **CLM_QIAN**
- **CLM1PT**
- **CPLHIST3HrWx**

CLM_QIAN is for the standard mode of using global atmospheric data that was developed by Qian et. al. for CLM using NCEP data from 1948 to 2004. See the Section called **CLM_QIAN mode and it’s DATM settings** for more information on the DATM settings for **CLM_QIAN** mode. **CLM1PT** is for the special cases where we have single-point tower data for particular sites. Right now we only have data for three urban locations: MexicoCity Mexico, Vancouver Canada, and the urban-c alpha site. See the Section called **CLM1PT mode and it’s DATM settings** for more information on the DATM settings for **CLM1PT** mode. **CPLHIST3HrWx** is for running with atmospheric forcing from a previous CESM simulation. See the Section called **CPLHIST3HrWx mode and it’s DATM settings** for more information on the DATM settings for **CPLHIST3HrWx** mode.

DATM_PRESAERO

DATM_PRESAERO sets the prescribed aerosol mode for the data atmosphere model. The list of valid options include:

- **clim_1850** = constant year 1850 conditions
- **clim_2000** = constant year 2000 conditions
- **trans_1850-2000** = transient 1850 to year 2000 conditions
- **rcp2.6** = transient conditions for the rcp=2.6 W/m² future scenario
- **rcp4.5** = transient conditions for the rcp=4.5 W/m² future scenario
- **rcp6.0** = transient conditions for the rcp=6.0 W/m² future scenario
- **rcp8.5** = transient conditions for the rcp=8.5 W/m² future scenario
- **ptl_pt1** = read in single-point or regional datasets

DATM_CLMNCEP_YR_START

DATM_CLMNCEP_YR_START sets the beginning year to cycle the atmospheric data over for the **CLM_QIAN** mode.

DATM_CLMNCEP_YR_END

DATM_CLMNCEP_YR_END sets the ending year to cycle the atmospheric data over for the **CLM_QIAN** mode.

DATM_CLMNCEP_YR_ALIGN

DATM_CLMNCEP_YR_START and DATM_CLMNCEP_YR_END determine the range of years to cycle the atmospheric data over, and DATM_CLMNCEP_YR_ALIGN determines which year in that range of years the simulation will start with.
Chapter 1. How to customize the configuration for a case with CLM

DATM_CPL_CASE

DATM_CPL_CASE sets the casename to use for the CPLHIST3HrWx mode.

DATM_CPL_YR_START

DATM_CPL_YR_START sets the beginning year to cycle the atmospheric data over for the CPLHIST3HrWx mode.

DATM_CPL_YR_END

DATM_CPL_YR_END sets the ending year to cycle the atmospheric data over for the CPLHIST3HrWx mode.

DATM_CPL_YR_ALIGN

DATM_CPL_YR_START and DATM_CPL_YR_END determine the range of years to cycle the atmospheric data over, and DATM_CPL_YR_ALIGN determines which year in that range of years the simulation will start with.

Downloading DATM Forcing Data

In Chapter One of the CESM User’s Guide (http://www.cesm.ucar.edu/models/cesm1.0/cesm/cesm_doc/book1.html) there is a section on "Downloading input data". The normal process of setting up cases will use the "scripts/ccsm_utils/Tools/check_input_data" script to retrieve data from the CESM subversion inputdata repository. However, the DATM forcing data is unique -- because it is large compared to the rest of the input data (56 Gbytes). Most of the data is stored in the directory set by the env_run.xml variable DIN_LOC_ROOT_CSMDATA. The CLM_QIAN forcing data is in a (possibly) separate directory using the env_run.xml variable DIN_LOC_ROOT_CLMQIAN. In most cases this directory will be in the directory: atm/datm7/atm_forcing.datm7.Qian.T62.c080727 under DIN_LOC_ROOT_CSMDATA. On bluefire there is a separate path for the CLM_QIAN forcing data. We have the full set of data available on a few of the machines we use: bluefire, jaguarpf, and edinburgh. As of October, 18th, 2011 we’ve uploaded the entire set of forcing data into the input data repository so now it can be treated like other input datasets and the check_input_data script can retrieve it for you. Previously only two years of data was available. You can also download the data from the Earth System Grid for other machines. See the Model Forcing Data (http://www.cesm.ucar.edu/models/cesm1.0/clm/clm_forcingdata_esg.html) link under the CLM Documentation Page (http://www.cesm.ucar.edu/models/cesm1.0/clm)

Customizing via the template files

The final thing that the user may wish to do before configure is run is to edit the template files which determine the configuration and initial namelist. The variables in env_conf.xml typically mean you will NOT have to edit the template. But, there are rare instances where it is useful to do so. Appendix A gives the details on how to do this. The template files are copied to your case directory and are available under Tools/Templates. The list of template files you might wish to edit are:

clm.cpl7.template
Chapter 1. How to customize the configuration for a case with CLM

datm.cpl7.template
cpl.template

More information on the CLM configure script

The configure script defines the details of a clm configuration and summarizes it into a config_cache.xml file. The config_cache.xml will be placed in your case directory under Buildconf/clmconf. The config_definition.xml (/../bld/config_files/config_definition.xml) in models/lnclnd/clm/bld/config_files gives a definition of each CLM configuration item, it is viewable in a web-browser. Many of these items are things that you would NOT change, but looking through the list gives you the valid options, and a good description of each. Below we repeat the config_definition.xml files contents:

Help on CLM configure

Coupling this with looking at the options to configure with "-help" as below will enable you to understand how to set the different options.

> cd models/lnclnd/clm/bld
> configure -help

The output to the above command is as follows:

We’ve given details on how to use the options in env_conf.xml to interact with the CLM "configure" and "build-namelist" scripts, as well as giving a good understanding of how these scripts work and the options to them. In the next section we give further details on the CLM namelist. You could customize the namelist for these options after "configure -case" is run.

Customizing the CLM namelist

Once a case is configured, we can then customize the case further, by editing the run-time namelist for CLM. First let’s list the definition of each namelist item and their valid values, and then we’ll list the default values for them. Next for some of the most used or tricky namelist items we’ll give examples of their use, and give you example namelists that highlight these features.

Definition of Namelist items and their default values

Here we point to you where you can find the definition of each namelist item and separately the default values for them. The default values may change depending on the resolution, land-mask, simulation-year
Chapter 1. How to customize the configuration for a case with CLM

and other attributes. Both of these files are viewable in your web browser. Below we provide the link for them, and then expand each in turn.

1. Definition of each Namelist Item (../../bld/namelist_files/namelist_definition.xml)
2. Default values of each CLM Namelist Item (../../bld/namelist_files/namelist_defaults_clm.xml)

One set of the namelist items allows you to add fields to the output history files: `hist_fincl1`, `hist_fincl2`, `hist_fincl3`, `hist_fincl4`, `hist_fincl5`, and `hist_fincl6`. The link CLM History Fields (../../bld/namelist_files/history_fields.xml) documents all of the history fields available and gives the long-name and units for each.

Definition of CLM history variables

Included in the table are the following pieces of information:

- Variable name.
- Long name description.
- units

Table 1-1. CLM History Fields

<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A10TMIN</td>
<td>10-day running mean of min 2-m temperature</td>
<td>K</td>
</tr>
<tr>
<td>A5TMIN</td>
<td>5-day running mean of min 2-m temperature</td>
<td>K</td>
</tr>
<tr>
<td>ACTUAL_IMMLOB</td>
<td>actual N immobilization</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>AGDD</td>
<td>growing degree-days base 5C</td>
<td>K</td>
</tr>
<tr>
<td>AGNPP</td>
<td>aboveground NPP</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>ALBD</td>
<td>surface albedo (direct)</td>
<td>proportion</td>
</tr>
<tr>
<td>ALBGRD</td>
<td>ground albedo (direct)</td>
<td>proportion</td>
</tr>
<tr>
<td>ALBGRRI</td>
<td>ground albedo (indirect)</td>
<td>proportion</td>
</tr>
<tr>
<td>ALBRI</td>
<td>surface albedo (indirect)</td>
<td>proportion</td>
</tr>
<tr>
<td>ALLOC_PNOW</td>
<td>fraction of current allocation to display as new growth</td>
<td>proportion</td>
</tr>
<tr>
<td>ALPHA</td>
<td>alpha coefficient for VOC calc</td>
<td>non</td>
</tr>
<tr>
<td>ALPHAPSNSHA</td>
<td>shaded c13 fractionation</td>
<td>proportion</td>
</tr>
<tr>
<td>ALPHAPSNSUN</td>
<td>sunlit c13 fractionation</td>
<td>proportion</td>
</tr>
<tr>
<td>ANNAV_G_T2M</td>
<td>annual average 2m air temperature</td>
<td>K</td>
</tr>
</tbody>
</table>
Chapter 1. How to customize the configuration for a case with CLM

<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANNMAX_RETRANSN</td>
<td>annual max of retranslocated N pool</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>ANNSUM_COUNTER</td>
<td>seconds since last annual accumulator turnover</td>
<td>s</td>
</tr>
<tr>
<td>ANNSUM_NPP</td>
<td>annual sum of NPP</td>
<td>gC/m^2/yr</td>
</tr>
<tr>
<td>ANNSUM_POTENTIAL_GPP</td>
<td>annual sum of potential GPP</td>
<td>gN/m^2/yr</td>
</tr>
<tr>
<td>ANN_FAREA_BURNED</td>
<td>annual total fractional area burned</td>
<td>proportion</td>
</tr>
<tr>
<td>AR</td>
<td>autotrophic respiration (MR + GR)</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>AR</td>
<td>autotrophic respiration</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>AVAILC</td>
<td>C flux available for allocation</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>AVAIL_RETRANSN</td>
<td>N flux available from retranslocation pool</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>BCDEP</td>
<td>total BC deposition (dry+wet) from atmosphere</td>
<td>kg/m^2/s</td>
</tr>
<tr>
<td>BETA</td>
<td>coefficient of convective velocity</td>
<td>none</td>
</tr>
<tr>
<td>BGLFR</td>
<td>background litterfall rate</td>
<td>1/s</td>
</tr>
<tr>
<td>BGMOIST</td>
<td>moisture dependence</td>
<td></td>
</tr>
<tr>
<td>BGNPP</td>
<td>belowground NPP</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>BGNPP</td>
<td>below-ground net primary production</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>BGTEMP</td>
<td>temperature dependence</td>
<td></td>
</tr>
<tr>
<td>BGTR</td>
<td>background transfer growth rate</td>
<td>1/s</td>
</tr>
<tr>
<td>BIOGENCO</td>
<td>biogenic CO flux</td>
<td>uGC/M2/H</td>
</tr>
<tr>
<td>BTRAN</td>
<td>transpiration beta factor</td>
<td>unitless</td>
</tr>
<tr>
<td>BUILDHEAT</td>
<td>heat flux from urban building interior to walls and roof</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>C13_AGNPP</td>
<td>C13 aboveground NPP</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_AR</td>
<td>C13 autotrophic respiration (MR + GR)</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_BGNPP</td>
<td>C13 belowground NPP</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_COL_CTRUNC</td>
<td>C13 column-level sink for C truncation</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_COL_FIRE_CLOSS</td>
<td>C13 total column-level fire C loss</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_CPOOL</td>
<td>C13 temporary photosynthate C pool</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_CPOOL_DEADCROOT_GR</td>
<td>C13 dead coarse root growth respiration</td>
<td>gC13/m^2/s</td>
</tr>
</tbody>
</table>
Chapter 1. How to customize the configuration for a case with CLM

<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C13_CPOOL_DEADCROOT_STORAGE_GR</td>
<td>C13 dead coarse root growth respiration to storage</td>
<td>gC13/m²/s</td>
</tr>
<tr>
<td>C13_CPOOL_DEADSTEM_GR</td>
<td>C13 dead stem growth respiration</td>
<td>gC13/m²/s</td>
</tr>
<tr>
<td>C13_CPOOL_DEADSTEM_STORAGE_GR</td>
<td>C13 dead stem growth respiration to storage</td>
<td>gC13/m²/s</td>
</tr>
<tr>
<td>C13_CPOOL_FROOT_GR</td>
<td>C13 fine root growth respiration</td>
<td>gC13/m²/s</td>
</tr>
<tr>
<td>C13_CPOOL_FROOT_STORAGE_GR</td>
<td>C13 fine root growth respiration to storage</td>
<td>gC13/m²/s</td>
</tr>
<tr>
<td>C13_CPOOL_LEAF_GR</td>
<td>C13 leaf growth respiration</td>
<td>gC13/m²/s</td>
</tr>
<tr>
<td>C13_CPOOL_LEAF_STORAGE_GR</td>
<td>Leaf growth respiration to storage</td>
<td>gC13/m²/s</td>
</tr>
<tr>
<td>C13_CPOOL_LIVECROOT_GR</td>
<td>C13 live coarse root growth respiration</td>
<td>gC13/m²/s</td>
</tr>
<tr>
<td>C13_CPOOL_LIVECROOT_STORAGE_GR</td>
<td>C13 live coarse root growth respiration to storage</td>
<td>gC13/m²/s</td>
</tr>
<tr>
<td>C13_CPOOL_LIVESTEM_GR</td>
<td>C13 live stem growth respiration</td>
<td>gC13/m²/s</td>
</tr>
<tr>
<td>C13_CPOOL_LIVESTEM_STORAGE_GR</td>
<td>C13 live stem growth respiration to storage</td>
<td>gC13/m²/s</td>
</tr>
<tr>
<td>C13_CPOOL_TO_DEADCROOTC</td>
<td>C13 allocation to dead coarse root C</td>
<td>gC13/m²/s</td>
</tr>
<tr>
<td>C13_CPOOL_TO_DEADCROOTC_STORAGE</td>
<td>C13 allocation to dead coarse root C storage</td>
<td>gC13/m²/s</td>
</tr>
<tr>
<td>C13_CPOOL_TO_DEADSTEMC</td>
<td>C13 allocation to dead stem C</td>
<td>gC13/m²/s</td>
</tr>
<tr>
<td>C13_CPOOL_TO_DEADSTEMC_STORAGE</td>
<td>C13 allocation to dead stem C storage</td>
<td>gC13/m²/s</td>
</tr>
<tr>
<td>C13_CPOOL_TO_FROOTC</td>
<td>C13 allocation to fine root C</td>
<td>gC13/m²/s</td>
</tr>
<tr>
<td>C13_CPOOL_TO_FROOTC_STORAGE</td>
<td>C13 allocation to fine root C storage</td>
<td>gC13/m²/s</td>
</tr>
<tr>
<td>C13_CPOOL_TO_GRESP_STORAGE</td>
<td>Location to growth respiration storage</td>
<td>gC13/m²/s</td>
</tr>
<tr>
<td>C13_CPOOL_TO_LEAFC</td>
<td>C13 allocation to leaf C</td>
<td>gC13/m²/s</td>
</tr>
<tr>
<td>C13_CPOOL_TO_LEAFC_STORAGE</td>
<td>C13 allocation to leaf C storage</td>
<td>gC13/m²/s</td>
</tr>
<tr>
<td>C13_CPOOL_TO_LIVECROOTC</td>
<td>C13 allocation to live coarse root C</td>
<td>gC13/m²/s</td>
</tr>
<tr>
<td>C13_CPOOL_TO_LIVECROOTC_STORAGE</td>
<td>C13 allocation to live coarse root C storage</td>
<td>gC13/m²/s</td>
</tr>
<tr>
<td>C13_CPOOL_TO_LIVESTEMC</td>
<td>C13 allocation to live stem C</td>
<td>gC13/m²/s</td>
</tr>
</tbody>
</table>
Chapter 1. How to customize the configuration for a case with CLM

<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C13_CPOOL_TO_LIVESTEMC_STORAGE</td>
<td>C13 CPOOL to live stem C storage</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_CURRENT_GR</td>
<td>C13 growth resp for new growth displayed in this timestep</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_CWDC</td>
<td>C13 coarse woody debris C</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_CWDC_TO_LITR2C</td>
<td>C13 decomp. of coarse woody debris C to litter 2 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_CWDC_TO_LITR3C</td>
<td>C13 decomp. of coarse woody debris C to litter 3 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_DEADCROOTC</td>
<td>C13 dead coarse root C</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_DEADCROOTC_STORAGE</td>
<td>C13 dead coarse root C storage</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_DEADCROOTC_STORAGE_TO_XFER</td>
<td>C13 dead coarse root C shift storage to transfer</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_DEADCROOTC_XFER</td>
<td>C13 dead coarse root C transfer</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_DEADCROOTC_XFER_TO_DEADCROOTC</td>
<td>C13 dead coarse root C growth from transfer</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_DEADSTEMC</td>
<td>C13 dead stem C</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_DEADSTEMC_STORAGE</td>
<td>C13 dead stem C storage</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_DEADSTEMC_STORAGE_TO_XFER</td>
<td>C13 dead stem C shift storage to transfer</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_DEADSTEMC_XFER</td>
<td>C13 dead stem C transfer</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_DEADSTEMC_XFER_TO_DEADSTEMC</td>
<td>C13 dead stem C growth from transfer</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_DISPVEGC</td>
<td>C13 displayed veg carbon, excluding storage and cpool</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_DWT_CLOSS</td>
<td>C13 total carbon loss from land cover conversion</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_DWT_CONV_CFLUX</td>
<td>C13 conversion C flux (immediate loss to atm)</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_DWT_DEADCROOTC_TO_CWDC</td>
<td>C13 dead coarse root to CWD due to landcover change</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_DWT_FROOTC_TO_LITR1C</td>
<td>C3 fine root to litter due to landcover change</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_DWT_FROOTC_TO_LITR2C</td>
<td>C3 fine root to litter due to landcover change</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_DWT_FROOTC_TO_LITR3C</td>
<td>C3 fine root to litter due to landcover change</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_DWT_LIVECROOTC_TO_CWDC</td>
<td>C3 coarse root to CWD due to landcover change</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>Name</td>
<td>Long-name</td>
<td>Units</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>C13_DWT_PROD100C_GAIN</td>
<td>C13 addition to 100-yr wood product pool</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_DWT_PROD10C_GAIN</td>
<td>C13 addition to 10-yr wood product pool</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_DWT_SEEDC_TO_DEADSTEM</td>
<td>C13 seed source to PFT-level deadstem</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_DWT_SEEDC_TO_LEAF</td>
<td>C13 seed source to PFT-level leaf</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_ER</td>
<td>C13 total ecosystem respiration, autotrophic + heterotrophic</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_FROOTC</td>
<td>C13 fine root C</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_FROOTC_STORAGE</td>
<td>C13 fine root C storage</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_FROOTC_STORAGE_TO_XFER</td>
<td>C13 fine root C shift storage to transfer</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_FROOTC_TO_LITR1C</td>
<td>C13 fine root C litterfall to litter 1 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_FROOTC_TO_LITR2C</td>
<td>C13 fine root C litterfall to litter 2 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_FROOTC_TO_LITR3C</td>
<td>C13 fine root C litterfall to litter 3 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_FROOTC_TO_LITTER</td>
<td>C13 fine root C litterfall</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_FROOTC_XFER</td>
<td>C13 fine root C transfer</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_FROOTC_XFER_TO_FROOTC</td>
<td>C13 fine root C growth from storage</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_FROOT_MR</td>
<td>C13 fine root maintenance respiration</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_GPP</td>
<td>C13 gross primary production</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_GR</td>
<td>C13 total growth respiration</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_GRESP_STORAGE</td>
<td>C13 growth respiration storage</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_GRESP_STORAGE_TO_XFER</td>
<td>C13 growth respiration shift storage to transfer</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_GRESP_XFER</td>
<td>C13 growth respiration transfer</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_HR</td>
<td>C13 total heterotrophic respiration</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_LEAFC</td>
<td>C13 leaf C</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_LEAFC_STORAGE</td>
<td>C13 leaf C storage</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_LEAFC_STORAGE_TO_XFER</td>
<td>C13 leaf C shift storage to transfer</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_LEAFC_TO_LITR1C</td>
<td>C13 leaf C litterfall to litter 1 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_LEAFC_TO_LITR2C</td>
<td>C13 leaf C litterfall to litter 2 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_LEAFC_TO_LITR3C</td>
<td>C13 leaf C litterfall to litter 3 C</td>
<td>gC13/m^2/s</td>
</tr>
</tbody>
</table>
Chapter 1. How to customize the configuration for a case with CLM

<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C13_LEAFC_TO_LITTER</td>
<td>C13 leaf C litterfall</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_LEAFC_XFER</td>
<td>C13 leaf C transfer</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_LEAFC_XFER_TO_LEAFC</td>
<td>C13 leaf C growth from storage</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_LEAF_MR</td>
<td>C13 leaf maintenance respiration</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_LITFALL</td>
<td>C13 litterfall (leaves and fine roots)</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_LITFIRE</td>
<td>C13 litter fire losses</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_LITHR</td>
<td>C13 litter heterotrophic respiration</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_LITR1C</td>
<td>C13 litter labile C</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_LITR1C_TO_SOIL1C</td>
<td>C13 decomp. of litter 1 C to SOM 1 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_LITR1_MR</td>
<td>C13 het. resp. from litter 1 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_LITR2C</td>
<td>C13 litter cellulose C</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_LITR2C_TO_SOIL2C</td>
<td>C13 decomp. of litter 2 C to SOM 2 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_LITR2_MR</td>
<td>C13 het. resp. from litter 2 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_LITR3C</td>
<td>C13 litter lignin C</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_LITR3C_TO_SOIL3C</td>
<td>C13 decomp. of litter 3 C to SOM 3 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_LITR3_MR</td>
<td>C13 het. resp. from litter 3 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_LIVECROOTC</td>
<td>C13 live coarse root C</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_LIVECROOTC_STORAGE</td>
<td>C13 live coarse root C storage</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_LIVECROOTC_STORAGE_TO_XFER</td>
<td>C13 live coarse root C shift storage to transfer</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_LIVECROOTC_TO_DEADCROOT</td>
<td>C13 coarse root C turnover</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_LIVECROOTC_XFER</td>
<td>C13 live coarse root C transfer</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_LIVECROOTC_XFER_TO_LIVECROOT</td>
<td>C13 live coarse root C growth from storage</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_LIVECROOT_MR</td>
<td>C13 live coarse root maintenance respiration</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_LIVESTEMC</td>
<td>C13 live stem C</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_LIVESTEMC_STORAGE</td>
<td>C13 live stem C storage</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_LIVESTEMC_STORAGE_TO_XFER</td>
<td>C13 live stem C shift storage to transfer</td>
<td>gC13/m^2/s</td>
</tr>
</tbody>
</table>
Chapter 1. How to customize the configuration for a case with CLM

<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C13_LIVESTEMC_TO_DEADSTEMC</td>
<td>C13 live stem C turnover</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_LIVESTEMC_XFER</td>
<td>C13 live stem C transfer</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_LIVESTEMC_XFER_TO_LIVESTEMC</td>
<td>C13 live stem C growth from storage</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_LIVESTEM_MR</td>
<td>C13 live stem maintenance respiration</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_CWDC_TO_FIRE</td>
<td>C13 coarse woody debris C fire loss</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_DEADCROOTC_STORAGE_TO_FIRE</td>
<td>C13 dead root C storage fire loss</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_DEADCROOTC_STORAGE_TO_LITR1C</td>
<td>C13 dead root C storage mortality to litter 1 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_DEADCROOTC_STORAGE_TO_LITTER</td>
<td>C13 dead root C storage mortality</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_DEADCROOTC_TO_CWDC</td>
<td>C13 dead root C mortality to coarse woody debris C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_DEADCROOTC_TO_CWDC_FIRE</td>
<td>C13 dead root C to coarse woody debris C by fire</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_DEADCROOTC_TO_FIRE</td>
<td>C13 dead root C fire loss</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_DEADCROOTC_TO_LITTER</td>
<td>C13 dead root C mortality to litter</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_DEADCROOTC_TO_LITTER_FIRE</td>
<td>C13 dead root C fire mortality to litter</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_DEADCROOTC_XFER_TO_FIRE</td>
<td>C13 dead root C transfer fire loss</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_DEADCROOTC_XFER_TO_LITR1C</td>
<td>C13 dead root C transfer mortality to litter 1 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_DEADCROOTC_XFER_TO_LITTER</td>
<td>C13 dead root C transfer mortality</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_DEADSTEMC_STORAGE_TO_FIRE</td>
<td>C13 dead stem C storage fire loss</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_DEADSTEMC_STORAGE_TO_LITR1C</td>
<td>C13 dead stem C storage mortality to litter 1 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_DEADSTEMC_STORAGE_TO_LITTER</td>
<td>C13 dead stem C storage mortality</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_DEADSTEMC_TO_CWDC</td>
<td>C13 dead stem C mortality to coarse woody debris C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_DEADSTEMC_TO_CWDC_FIRE</td>
<td>C13 dead stem C to coarse woody debris C by fire</td>
<td>gC13/m^2/s</td>
</tr>
</tbody>
</table>
Chapter 1. How to customize the configuration for a case with CLM

<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C13_M_DEADSTEMC_TO_FIRE</td>
<td>C13 dead stem C fire loss</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_DEADSTEMC_TO_LITR1C</td>
<td>C13 dead stem C mortality</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_DEADSTEMC_TO_LITR2FIRE</td>
<td>C13 dead stem C fire mortality to litter</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_DEADSTEMC_XFER_TO_FIRE</td>
<td>C13 stem C transfer fire loss</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_DEADSTEMC_XFER_TO_LITR1C</td>
<td>C13 C transfer mortality to litter 1 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_DEADSTEMC_XFER_TO_LITR2C</td>
<td>C13 C transfer mortality</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_DEADSTEMC_XFER_TO_LITR3C</td>
<td>C13 C transfer mortality</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_FROOTC_STORAGE_TO_FIRE</td>
<td>C13 fine root C storage fire loss</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_FROOTC_STORAGE_TO_LITR1C</td>
<td>C13 fine root C storage mortality to litter 1 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_FROOTC_STORAGE_TO_LITR2C</td>
<td>C13 fine root C storage mortality to litter 2 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_FROOTC_STORAGE_TO_LITR3C</td>
<td>C13 fine root C storage mortality to litter 3 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_FROOTC_TO_FIRE</td>
<td>C13 fine root C fire loss</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_FROOTC_TO_LITR1C</td>
<td>C13 fine root C mortality to litter 1 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_FROOTC_TO_LITR2C</td>
<td>C13 fine root C mortality to litter 2 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_FROOTC_TO_LITR3C</td>
<td>C13 fine root C mortality to litter 3 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_FROOTC_TO_LITTER</td>
<td>C13 fine root C mortality</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_FROOTC_XFER_TO_FIRE</td>
<td>C13 fine root C transfer fire loss</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_FROOTC_XFER_TO_LITR1C</td>
<td>C13 fine root C transfer mortality to litter 1 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_FROOTC_XFER_TO_LITR2C</td>
<td>C13 fine root C transfer mortality to litter 2 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_FROOTC_XFER_TO_LITR3C</td>
<td>C13 fine root C transfer mortality to litter 3 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_GRESP_STORAGE_TO_FIRE</td>
<td>C13 growth respiration storage fire loss</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_GRESP_STORAGE_TO_LITR1C</td>
<td>C13 growth respiration storage mortality to litter 1 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_GRESP_STORAGE_TO_LITR2C</td>
<td>C13 growth respiration storage mortality</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_GRESP_XFER_TO_FIRE</td>
<td>C13 growth respiration transfer fire loss</td>
<td>gC13/m^2/s</td>
</tr>
</tbody>
</table>
Chapter 1. How to customize the configuration for a case with CLM

<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C13_M_GRESP_XFER_TO_LITR1C</td>
<td>C13 growth respiration transfer mortality to litter 1 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_GRESP_XFER_TO_LITR2C</td>
<td>C13 growth respiration transfer mortality</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LEAFC_STORAGE_TO_FIRE</td>
<td>C13 leaf C storage fire loss</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LEAFC_STORAGE_TO_LITTER</td>
<td>C13 leaf C storage mortality</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LEAFC_TO_LITR1C</td>
<td>C13 leaf C mortality to litter 1 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LEAFC_TO_LITR2C</td>
<td>C13 leaf C mortality to litter 2 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LEAFC_TO_LITR3C</td>
<td>C13 leaf C mortality to litter 3 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LEAFC_TO_LITTER</td>
<td>C13 leaf C mortality</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LEAFC_XFER_TO_FIRE</td>
<td>C13 leaf C transfer fire loss</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LEAFC_XFER_TO_LITR1C</td>
<td>C13 leaf C transfer mortality to litter 1 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LEAFC_XFER_TO_LITR2C</td>
<td>C13 leaf C transfer mortality to litter 2 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LEAFC_XFER_TO_LITR3C</td>
<td>C13 leaf C transfer mortality to litter 3 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LITR1C_TO_FIRE</td>
<td>C13 litter 1 C fire loss</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LITR2C_TO_FIRE</td>
<td>C13 litter 2 C fire loss</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LITR3C_TO_FIRE</td>
<td>C13 litter 3 C fire loss</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LIVECROOTC_STORAGE_TO_FIRE</td>
<td>C13 live coarse root C storage fire loss</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LIVECROOTC_STORAGE_TO_LITR1C</td>
<td>C13 live coarse root C storage mortality to litter 1 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LIVECROOTC_STORAGE_TO_LITR2C</td>
<td>C13 live coarse root C storage mortality</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LIVECROOTC_TO_CWDC</td>
<td>C13 live coarse root C mortality to coarse woody debris C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LIVECROOTC_TO_FIRE</td>
<td>C13 live coarse root C fire loss</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LIVECROOTC_TO_LITTER</td>
<td>C13 live coarse root C mortality</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LIVECROOTC_XFER_TO_FIRE</td>
<td>C13 live coarse root C transfer fire loss</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LIVECROOTC_XFER_TO_LITR1C</td>
<td>C13 live coarse root C transfer mortality to litter 1 C</td>
<td>gC13/m^2/s</td>
</tr>
</tbody>
</table>
Chapter 1. How to customize the configuration for a case with CLM

<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C13_M_LIVECROOTC_XFER_TO_LITTER</td>
<td>C13 live coarse root C transfer mortality</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LIVESTEMC_STORAGE_TO_FIRE</td>
<td>C13 live stem C storage fire loss</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LIVESTEMC_STORAGE_TO_LITTER_C</td>
<td>Storage mortality to litter C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LIVESTEMC_STORAGE_TO_LITTER_1</td>
<td>C13 live stem C storage mortality to litter 1 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LIVESTEMC_TO_CWDC</td>
<td>C13 live stem C mortality to coarse woody debris C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LIVESTEMC_TO_FIRE</td>
<td>C13 live stem C fire loss</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LIVESTEMC_TO_LITTER</td>
<td>C13 live stem C mortality</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LIVESTEMC_XFER_TO_FIRE</td>
<td>C13 live stem C transfer fire loss</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LIVESTEMC_XFER_TO_LITTER_C</td>
<td>C13 live stem C transfer mortality to litter C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_M_LIVESTEMC_XFER_TO_LITTER_1</td>
<td>C13 live stem C transfer mortality to litter 1 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_NEE</td>
<td>C13 net ecosystem exchange of carbon, includes fire flux, positive for source</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_NEP</td>
<td>C13 net ecosystem production, excludes fire flux, positive for sink</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_NPP</td>
<td>C13 net primary production</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_PFT_CTRUNC</td>
<td>C13 pft-level sink for C truncation</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_PFT_FIRE_CLOSS</td>
<td>C13 total pft-level fire C loss</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_PROD100C</td>
<td>C13 100-yr wood product C</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_PROD100C_LOSS</td>
<td>C13 loss from 100-yr wood product pool</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_PROD10C</td>
<td>C13 10-yr wood product C</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_PROD10C_LOSS</td>
<td>C13 loss from 10-yr wood product pool</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_PRODUCT_CLOSS</td>
<td>C13 total carbon loss from wood product pools</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_PSNSHA</td>
<td>C13 shaded leaf photosynthesis</td>
<td>umolCO2/m^2/s</td>
</tr>
<tr>
<td>C13_PSNSHADE_TO_CPOOL</td>
<td>C13 C fixation from shaded canopy</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_PSNSUN</td>
<td>C13 sunlit leaf photosynthesis</td>
<td>umolCO2/m^2/s</td>
</tr>
</tbody>
</table>
Chapter 1. How to customize the configuration for a case with CLM

<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C13_PSNSUN_TO_CPOOL</td>
<td>C13 C fixation from sunlit canopy</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_RR</td>
<td>C13 root respiration (fine root MR + total root GR)</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_SEEDC</td>
<td>C13 pool for seeding new PFTs</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_SOIL1C</td>
<td>C13 soil organic matter C (fast pool)</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_SOIL1C_TO_SOIL2C</td>
<td>C13 decomp. of SOM 1 C to SOM 2 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_SOIL1_HR</td>
<td>C13 het. resp. from SOM 1 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_SOIL2C</td>
<td>C13 soil organic matter C (medium pool)</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_SOIL2C_TO_SOIL3C</td>
<td>C13 decomp. of SOM 2 C to SOM 3 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_SOIL2_HR</td>
<td>C13 het. resp. from SOM 2 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_SOIL3C</td>
<td>C13 soil organic matter C (slow pool)</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_SOIL3C_TO_SOIL4C</td>
<td>C13 decomp. of SOM 3 C to SOM 4 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_SOIL3_HR</td>
<td>C13 het. resp. from SOM 3 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_SOIL4C</td>
<td>C13 soil organic matter C (slowest pool)</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_SOIL4_HR</td>
<td>C13 het. resp. from SOM 4 C</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_SOMFIRE</td>
<td>C13 soil organic matter fire losses</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_SOMHR</td>
<td>C13 soil organic matter heterotrophic respiration</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_SR</td>
<td>C13 total soil respiration (HR + root resp)</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_STORAGE_GR</td>
<td>C13 growth resp for growth sent to storage for later display</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_STORVEGC</td>
<td>C13 stored vegetation carbon, excluding cpool</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_TOTCOLC</td>
<td>C13 total column carbon, including veg and cpool</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_TOTECOSYSC</td>
<td>C13 total ecosystem carbon, including veg but excluding cpool</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_TOTFIRE</td>
<td>C13 total ecosystem fire losses</td>
<td>gC13/m^2/s</td>
</tr>
<tr>
<td>C13_TOTLITC</td>
<td>C13 total litter carbon</td>
<td>gC13/m^2</td>
</tr>
<tr>
<td>C13_TOTPFTC</td>
<td>C13 total pft-level carbon, including cpool</td>
<td>gC13/m^2</td>
</tr>
</tbody>
</table>
Chapter 1. How to customize the configuration for a case with CLM

<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C13_TOTPRODC</td>
<td>C13 total wood product C</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>C13_TOTSOMC</td>
<td>C13 total soil organic matter carbon</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>C13_TOTVEGC</td>
<td>C13 total vegetation carbon, excluding cpool</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>C13_TRANSFER_DEADCROOT_GR</td>
<td>C13 dead coarse root growth respiration from storage</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>C13_TRANSFER_DEADSTEM_GR</td>
<td>C13 dead stem growth respiration from storage</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>C13_TRANSFER_FROOT_GR</td>
<td>C13 fine root growth respiration from storage</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>C13_TRANSFER_GR</td>
<td>C13 growth resp for transfer growth displayed in this timestep</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>C13_TRANSFER_LEAF_GR</td>
<td>C13 leaf growth respiration from storage</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>C13_TRANSFER_LIVECROOT_GR</td>
<td>C13 live coarse root growth respiration from storage</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>C13_TRANSFER_LIVESTEM_GR</td>
<td>C13 live stem growth respiration from storage</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>C13_VEGFIRE</td>
<td>C13 pft-level fire loss</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>C13_XSMRPOOL</td>
<td>C13 temporary photosynthate C pool</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>CANNAVG_T2M</td>
<td>annual average of 2m air temperature</td>
<td>K</td>
</tr>
<tr>
<td>CANNSUM_NPP</td>
<td>annual sum of column-level NPP</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>CFLUX</td>
<td>total Carbon flux</td>
<td>g/m^2/s</td>
</tr>
<tr>
<td>CGRND</td>
<td>deriv. of soil energy flux wrt to soil temp</td>
<td>W/m^2/K</td>
</tr>
<tr>
<td>CGRNDL</td>
<td>deriv. of soil latent heat flux wrt soil temp</td>
<td>W/m^2/K</td>
</tr>
<tr>
<td>CGRNDS</td>
<td>deriv. of soil sensible heat flux wrt soil temp</td>
<td>W/m^2/K</td>
</tr>
<tr>
<td>CISHA</td>
<td>shaded intracellular CO2</td>
<td>Pa</td>
</tr>
<tr>
<td>CISUN</td>
<td>sunlit intracellular CO2</td>
<td>Pa</td>
</tr>
<tr>
<td>CLOSS</td>
<td>Amt. of Carbon lost by pool</td>
<td>g/m^2/s</td>
</tr>
<tr>
<td>CO2FLUX</td>
<td>net CO2 flux</td>
<td>g/m^2/s</td>
</tr>
<tr>
<td>COL_CTRUNC</td>
<td>column-level sink for C truncation</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>COL_FIRE_CLOSS</td>
<td>total column-level fire C loss</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>COL_FIRE_NLOSS</td>
<td>total column-level fire N loss</td>
<td>gN/m^2/s</td>
</tr>
</tbody>
</table>
Chapter 1. How to customize the configuration for a case with CLM

<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>COL_NTRUNC</td>
<td>column-level sink for N truncation</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>COSZEN</td>
<td>cosine of solar zenith angle</td>
<td>none</td>
</tr>
<tr>
<td>CP</td>
<td>cp coefficient for VOC calc</td>
<td>non</td>
</tr>
<tr>
<td>CPOOL</td>
<td>temporary photosynthe C pool</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>CPOOL_DEADCROOT_GR</td>
<td>dead coarse root growth respiration</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>CPOOL_DEADCROOT_STORAGE</td>
<td>dead coarse root growth respiration to storage</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>CPOOL_DEADSTEM_GR</td>
<td>dead stem growth respiration</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>CPOOL_DEADSTEM_STORAGE</td>
<td>dead stem growth respiration to storage</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>CPOOL_FROOT_GR</td>
<td>fine root growth respiration</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>CPOOL_FROOT_STORAGE</td>
<td>fine root growth respiration to storage</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>CPOOL_LEAF_GR</td>
<td>leaf growth respiration</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>CPOOL_LEAF_STORAGE</td>
<td>leaf growth respiration to storage</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>CPOOL_LIVECROOT_GR</td>
<td>live coarse root growth respiration</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>CPOOL_LIVECROOT_STORAGE</td>
<td>live coarse root growth respiration to storage</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>CPOOL_LIVESTEM_GR</td>
<td>live stem growth respiration</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>CPOOL_LIVESTEM_STORAGE</td>
<td>live stem growth respiration to storage</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>CPOOL_TO_DEADCROOTC</td>
<td>allocation to dead coarse root C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>CPOOL_TO_DEADCROOTC_STOR</td>
<td>allocation to dead coarse root C storage</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>CPOOL_TO_DEADSTEMC</td>
<td>allocation to dead stem C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>CPOOL_TO_DEADSTEMC_STOR</td>
<td>allocation to dead stem C storage</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>CPOOL_TO_FROOTC</td>
<td>allocation to fine root C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>CPOOL_TO_FROOTC_STOR</td>
<td>allocation to fine root C storage</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>CPOOL_TO_GRESP_STOR</td>
<td>allocation to growth respiration</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>CPOOL_TO_LEAFC</td>
<td>allocation to leaf C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>CPOOL_TO_LEAFC_STOR</td>
<td>allocation to leaf C storage</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>CPOOL_TO_LIVECROOTC</td>
<td>allocation to live coarse root C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>Name</td>
<td>Long-name</td>
<td>Units</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>CPOOL_TO_LIVECROOTC_STORAGE</td>
<td>allocation to live coarse root C storage</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>CPOOL_TO_LIVESTEMC</td>
<td>allocation to live stem C</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>CPOOL_TO_LIVESTEMC_STORAGE</td>
<td>allocation to live stem C storage</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>CTRANS</td>
<td>Amt. of Carbon transferred out of pool types</td>
<td>g/m²/s</td>
</tr>
<tr>
<td>CURRENT_GR</td>
<td>growth resp for new growth displayed in this timestep</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>CWDC</td>
<td>coarse woody debris C</td>
<td>gC/m²</td>
</tr>
<tr>
<td>CWDC</td>
<td>coarse woody debris C</td>
<td>gC/m²</td>
</tr>
<tr>
<td>CWDC_HR</td>
<td>coarse woody debris C heterotrophic respiration</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>CWDC_HR</td>
<td>coarse woody debris C heterotrophic respiration</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>CWDC_LOSS</td>
<td>coarse woody debris C loss</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>CWDC_LOSS</td>
<td>coarse woody debris C loss</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>CWDC_TO_LITR2C</td>
<td>decomp. of coarse woody debris C to litter 2 C</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>CWDC_TO_LITR3C</td>
<td>decomp. of coarse woody debris C to litter 3 C</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>CWDN</td>
<td>coarse woody debris N</td>
<td>gN/m²</td>
</tr>
<tr>
<td>CWDN_TO_LITR2N</td>
<td>decomp. of coarse woody debris N to litter 2 N</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>CWDN_TO_LITR3N</td>
<td>decomp. of coarse woody debris N to litter 3 N</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>C_ALLOMETRY</td>
<td>C allocation index</td>
<td>none</td>
</tr>
<tr>
<td>DAYL</td>
<td>daylength</td>
<td>s</td>
</tr>
<tr>
<td>DAYS_ACTIVE</td>
<td>number of days since last dormancy</td>
<td>days</td>
</tr>
<tr>
<td>DEADCROOTC</td>
<td>dead coarse root C</td>
<td>gC/m²</td>
</tr>
<tr>
<td>DEADCROOTC_STORAGE</td>
<td>dead coarse root C storage</td>
<td>gC/m²</td>
</tr>
<tr>
<td>DEADCROOTC_STORAGE_TO_XFER</td>
<td>dead coarse root C shift storage</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>DEADCROOTC_XFER</td>
<td>dead coarse root C transfer</td>
<td>gC/m²</td>
</tr>
<tr>
<td>DEADCROOTC_XFER_TO_DEADCROOT</td>
<td>dead C growth from storage</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>DEADCROOTN</td>
<td>dead coarse root N</td>
<td>gN/m²</td>
</tr>
<tr>
<td>DEADCROOTN_STORAGE</td>
<td>dead coarse root N storage</td>
<td>gN/m²</td>
</tr>
<tr>
<td>DEADCROOTN_STORAGE_TO_XFER</td>
<td>dead coarse root N shift storage</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>Name</td>
<td>Long-name</td>
<td>Units</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>DEADCROOTN_XFER</td>
<td>dead coarse root N transfer</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>DEADCROOTN_XFER_TO_DEADSTEMC</td>
<td>dead coarse root N growth from storage</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>DEADSTEMC</td>
<td>dead stem C</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>DEADSTEMC_STORAGE</td>
<td>dead stem C storage</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>DEADSTEMC_STORAGE_TO_DEADSTEMC</td>
<td>dead stem C shift storage to transfer</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>DEADSTEMC_XFER</td>
<td>dead stem C transfer</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>DEADSTEMC_XFER_TO_DEADSTEMC</td>
<td>dead stem C growth from storage</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>DEADSTEMN</td>
<td>dead stem N</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>DEADSTEMN_STORAGE</td>
<td>dead stem N storage</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>DEADSTEMN_STORAGE_TO_DEADSTEMN</td>
<td>dead stem N shift storage to transfer</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>DEADSTEMN_XFER</td>
<td>dead stem N transfer</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>DEADSTEMN_XFER_TO_DEADSTEMN</td>
<td>dead stem N growth from storage</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>DECL</td>
<td>solar declination angle</td>
<td>radians</td>
</tr>
<tr>
<td>DEGDAY</td>
<td>Accumulated degree days</td>
<td>deg C</td>
</tr>
<tr>
<td>DENIT</td>
<td>total rate of denitrification</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>DEWMX</td>
<td>Maximum allowed dew</td>
<td>mm</td>
</tr>
<tr>
<td>DGNETDTDT</td>
<td>derivative of net ground heat flux</td>
<td>W/m^2/K</td>
</tr>
<tr>
<td></td>
<td>wrt soil temp</td>
<td></td>
</tr>
<tr>
<td>DISPLA</td>
<td>displacement height</td>
<td>m</td>
</tr>
<tr>
<td>DISPVEGC</td>
<td>displayed veg carbon, excluding storage and cpool</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>DISPVEGN</td>
<td>displayed vegetation nitrogen</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>DLRAD</td>
<td>downward longwave radiation below the canopy</td>
<td>W/m^2</td>
</tr>
<tr>
<td>DORMANT_FLAG</td>
<td>dormancy flag</td>
<td>none</td>
</tr>
<tr>
<td>DOWNREG</td>
<td>fractional reduction in GPP due to N limitation</td>
<td>proportion</td>
</tr>
<tr>
<td>DPVLTRB1</td>
<td>turbulent deposition velocity 1</td>
<td>m/s</td>
</tr>
<tr>
<td>DPVLTRB2</td>
<td>turbulent deposition velocity 2</td>
<td>m/s</td>
</tr>
<tr>
<td>DPVLTRB3</td>
<td>turbulent deposition velocity 3</td>
<td>m/s</td>
</tr>
<tr>
<td>DPVLTRB4</td>
<td>turbulent deposition velocity 4</td>
<td>m/s</td>
</tr>
<tr>
<td>DSTDEP</td>
<td>total dust deposition (dry+wet) from atmosphere</td>
<td>kg/m^2/s</td>
</tr>
<tr>
<td>DSTFLXT</td>
<td>total surface dust emission</td>
<td>kg/m2/s</td>
</tr>
<tr>
<td>DT_VEG</td>
<td>change in t_veg, last iteration</td>
<td>K</td>
</tr>
</tbody>
</table>
Chapter 1. How to customize the configuration for a case with CLM

<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVOLRDT_LND</td>
<td>RTM land change in storage: LIQ</td>
<td>mm/s</td>
</tr>
<tr>
<td>DVOLRDT_LND_ICE</td>
<td>RTM land change in storage: ICE</td>
<td>mm/s</td>
</tr>
<tr>
<td>DVOLRDT_OCN</td>
<td>RTM ocean change of storage: LIQ</td>
<td>mm/s</td>
</tr>
<tr>
<td>DVOLRDT_OCN_ICE</td>
<td>RTM ocean change of storage: ICE</td>
<td>mm/s</td>
</tr>
<tr>
<td>DWT_CLOSS</td>
<td>total carbon loss from land cover conversion</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>DWT_CONV_CFLUX</td>
<td>conversion C flux (immediate loss to atm)</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>DWT_CONV_NFLUX</td>
<td>conversion N flux (immediate loss to atm)</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>DWT_DEADCROOTC_TO_CWD</td>
<td>dead coarse root to CWD due to landcover change</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>DWT_DEADCROOTN_TO_CWDN</td>
<td>dead coarse root to CWD due to landcover change</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>DWT_FROOTC_TO_LITR1C</td>
<td>fine root to litter due to landcover change</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>DWT_FROOTC_TO_LITR2C</td>
<td>fine root to litter due to landcover change</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>DWT_FROOTC_TO_LITR3C</td>
<td>fine root to litter due to landcover change</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>DWT_FROOTN_TO_LITR1N</td>
<td>fine root to litter due to landcover change</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>DWT_FROOTN_TO_LITR2N</td>
<td>fine root to litter due to landcover change</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>DWT_FROOTN_TO_LITR3N</td>
<td>fine root to litter due to landcover change</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>DWT_LIVECROOTC_TO_CWD</td>
<td>live coarse root to CWD due to landcover change</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>DWT_LIVECROOTN_TO_CWDN</td>
<td>live coarse root to CWD due to landcover change</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>DWT_NLOSS</td>
<td>total nitrogen loss from landcover conversion</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>DWT_PROD100C_GAIN</td>
<td>landcover change-driven addition to 100-yr wood product pool</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>DWT_PROD100N_GAIN</td>
<td>addition to 100-yr wood product pool</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>DWT_PROD10C_GAIN</td>
<td>landcover change-driven addition to 10-yr wood product pool</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>Name</td>
<td>Long-name</td>
<td>Units</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>DWT_PROD10N_GAIN</td>
<td>addition to 10-yr wood product pool</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>DWT_SEEDC_TO_DEADSTEM</td>
<td>seed source to PFT-level deadstem</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>DWT_SEEDC_TO_LEAF</td>
<td>seed source to PFT-level leaf</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>DWT_SEEDN_TO_DEADSTEM</td>
<td>seed source to PFT-level deadstem</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>DWT_SEEDN_TO_LEAF</td>
<td>seed source to PFT-level leaf</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>EFF_KID</td>
<td>effective extinction coefficient for indirect from direct</td>
<td>none</td>
</tr>
<tr>
<td>EFF_KII</td>
<td>effective extinction coefficient for indirect from indirect</td>
<td>none</td>
</tr>
<tr>
<td>EFF_POROSITY</td>
<td>effective porosity = porosity - vol_ice</td>
<td>proportion</td>
</tr>
<tr>
<td>EFLX_DYNBAL</td>
<td>dynamic land cover change conversion energy flux</td>
<td>W/m^2</td>
</tr>
<tr>
<td>EFLX_GNET</td>
<td>net heat flux into ground</td>
<td>W/m^2</td>
</tr>
<tr>
<td>EFLX_LHTOT</td>
<td>total latent heat flux [+ to atm]</td>
<td>W/m^2</td>
</tr>
<tr>
<td>EFLX_LH_TOT_R</td>
<td>Rural total evaporation</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>EFLX_LH_TOT_U</td>
<td>Urban total evaporation</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>EFLX_SOIL_GRND</td>
<td>soil heat flux [+ into soil]</td>
<td>W/m^2</td>
</tr>
<tr>
<td>ELAI</td>
<td>exposed one-sided leaf area index</td>
<td>m^2/m^2</td>
</tr>
<tr>
<td>EMG</td>
<td>ground emissivity</td>
<td>proportion</td>
</tr>
<tr>
<td>EMV</td>
<td>vegetation emissivity</td>
<td>proportion</td>
</tr>
<tr>
<td>EOPT</td>
<td>Eopt coefficient for VOC calc</td>
<td>non</td>
</tr>
<tr>
<td>ER</td>
<td>total ecosystem respiration, autotrophic + heterotrophic</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>ERRH2O</td>
<td>total water conservation error</td>
<td>mm</td>
</tr>
<tr>
<td>ERRSEB</td>
<td>surface energy conservation error</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>ERRSOI</td>
<td>soil/lake energy conservation error</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>ERRSOL</td>
<td>solar radiation conservation error</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>ESAI</td>
<td>exposed one-sided stem area index</td>
<td>m^2/m^2</td>
</tr>
<tr>
<td>EXCESSC</td>
<td>excess carbon</td>
<td>g/m2/timestep</td>
</tr>
<tr>
<td>EXCESS_CFLUX</td>
<td>C flux not allocated due to downregulation</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>Name</td>
<td>Long-name</td>
<td>Units</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>FABD</td>
<td>flux absorbed by veg per unit direct flux</td>
<td>proportion</td>
</tr>
<tr>
<td>FABI</td>
<td>flux absorbed by veg per unit indirect flux</td>
<td>proportion</td>
</tr>
<tr>
<td>FAREA_BURNED</td>
<td>timestep fractional area burned</td>
<td>proportion</td>
</tr>
<tr>
<td>FCEV</td>
<td>canopy evaporation</td>
<td>watt/m2</td>
</tr>
<tr>
<td>FCOV</td>
<td>fractional impermeable area</td>
<td>unitless</td>
</tr>
<tr>
<td>FCTR</td>
<td>canopy transpiration</td>
<td>watt/m2</td>
</tr>
<tr>
<td>FDRY</td>
<td>fraction of foliage that is green and dry</td>
<td>proportion</td>
</tr>
<tr>
<td>FGEV</td>
<td>ground evaporation</td>
<td>watt/m2</td>
</tr>
<tr>
<td>FGR</td>
<td>heat flux into soil/snow including snow melt</td>
<td>watt/m2</td>
</tr>
<tr>
<td>FGR12</td>
<td>heat flux between soil layers 1 and 2</td>
<td>watt/m2</td>
</tr>
<tr>
<td>FGR_R</td>
<td>Rural heat flux into soil/snow including snow melt</td>
<td>watt/m2</td>
</tr>
<tr>
<td>FGR_U</td>
<td>Urban heat flux into soil/snow including snow melt</td>
<td>watt/m2</td>
</tr>
<tr>
<td>FIRA</td>
<td>net infrared (longwave) radiation</td>
<td>watt/m2</td>
</tr>
<tr>
<td>FIRA_R</td>
<td>Rural net infrared (longwave) radiation</td>
<td>watt/m2</td>
</tr>
<tr>
<td>FIRA_U</td>
<td>Urban net infrared (longwave) radiation</td>
<td>watt/m2</td>
</tr>
<tr>
<td>FIRE</td>
<td>emitted infrared (longwave) radiation</td>
<td>watt/m2</td>
</tr>
<tr>
<td>FIRESEASONL</td>
<td>annual fire season length</td>
<td>days</td>
</tr>
<tr>
<td>FIRE_PROB</td>
<td>daily fire probability</td>
<td>0-1</td>
</tr>
<tr>
<td>FLDS</td>
<td>atmospheric longwave radiation</td>
<td>watt/m2</td>
</tr>
<tr>
<td>FLUXFM2A</td>
<td>heat flux for rain to snow conversion</td>
<td>W/m2</td>
</tr>
<tr>
<td>FLUXFMLND</td>
<td>heat flux from rain to snow conversion</td>
<td>W/m2</td>
</tr>
<tr>
<td>FNPP</td>
<td>net primary production</td>
<td>g/m2/s</td>
</tr>
<tr>
<td>FPG</td>
<td>fraction of potential gpp</td>
<td>proportion</td>
</tr>
<tr>
<td>FPI</td>
<td>fraction of potential immobilization</td>
<td>proportion</td>
</tr>
<tr>
<td>FPSN</td>
<td>photosynthesis</td>
<td>umol/m2/s</td>
</tr>
<tr>
<td>FRAC_IECOLD</td>
<td>fraction of ice relative to the total water</td>
<td>proportion</td>
</tr>
<tr>
<td>FROOTC</td>
<td>fine root C</td>
<td>gC/m2</td>
</tr>
</tbody>
</table>
Chapter 1. How to customize the configuration for a case with CLM

<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>FROOTC</td>
<td>fine root C</td>
<td>gC/m²</td>
</tr>
<tr>
<td>FROOTC_ALLOC</td>
<td>fine root C allocation</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>FROOTC_ALLOC</td>
<td>fine root C allocation</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>FROOTCLOSS</td>
<td>fine root C loss</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>FROOTCLOSS</td>
<td>fine root C loss</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>FROOTC_STORAGE</td>
<td>fine root C storage</td>
<td>gC/m²</td>
</tr>
<tr>
<td>FROOTC_STORAGE_TO_XFER</td>
<td>fine root C shift storage to transfer</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>FROOTC_TO_LITR1C</td>
<td>fine root C litterfall to litter 1 C</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>FROOTC_TO_LITR2C</td>
<td>fine root C litterfall to litter 2 C</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>FROOTC_TO_LITR3C</td>
<td>fine root C litterfall to litter 3 C</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>FROOTC_TO_LITTER</td>
<td>fine root C litterfall</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>FROOTC_XFER</td>
<td>fine root C transfer</td>
<td>gC/m²</td>
</tr>
<tr>
<td>FROOTC_XFER_TO_FROOTC</td>
<td>fine root C growth from storage</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>FROOTN</td>
<td>fine root N</td>
<td>gN/m²</td>
</tr>
<tr>
<td>FROOTN_STORAGE</td>
<td>fine root N storage</td>
<td>gN/m²</td>
</tr>
<tr>
<td>FROOTN_STORAGE_TO_XFER</td>
<td>fine root N shift storage to transfer</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>FROOTN_TO_LITR1N</td>
<td>fine root N litterfall to litter 1 N</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>FROOTN_TO_LITR2N</td>
<td>fine root N litterfall to litter 2 N</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>FROOTN_TO_LITR3N</td>
<td>fine root N litterfall to litter 3 N</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>FROOTN_TO_LITTER</td>
<td>fine root N litterfall</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>FROOTN_XFER</td>
<td>fine root N transfer</td>
<td>gN/m²</td>
</tr>
<tr>
<td>FROOTN_XFER_TO_FROOTN</td>
<td>fine root N growth from storage</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>FROOT_MIR</td>
<td>fine root maintenance respiration</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>FSA</td>
<td>absorbed solar radiation</td>
<td>watt/m²</td>
</tr>
<tr>
<td>FSAT</td>
<td>fractional area with water table at surface</td>
<td>unitless</td>
</tr>
<tr>
<td>FSA_R</td>
<td>Rural absorbed solar radiation</td>
<td>watt/m²</td>
</tr>
<tr>
<td>FSA_U</td>
<td>Urban absorbed solar radiation</td>
<td>watt/m²</td>
</tr>
<tr>
<td>FSD24</td>
<td>direct radiation (last 24hrs)</td>
<td>K</td>
</tr>
<tr>
<td>FSD240</td>
<td>direct radiation (last 240hrs)</td>
<td>K</td>
</tr>
<tr>
<td>FSDS</td>
<td>atmospheric incident solar radiation</td>
<td>watt/m²</td>
</tr>
<tr>
<td>FSDSND</td>
<td>direct nir incident solar radiation</td>
<td>watt/m²</td>
</tr>
<tr>
<td>FSDSNDLN</td>
<td>direct nir incident solar radiation at local noon</td>
<td>watt/m²</td>
</tr>
</tbody>
</table>
Chapter 1. How to customize the configuration for a case with CLM

<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSDSNI</td>
<td>diffuse nir incident solar radiation</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>FSDSVD</td>
<td>direct vis incident solar radiation</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>FSDSVDLN</td>
<td>direct vis incident solar radiation at local noon</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>FSDSVI</td>
<td>diffuse vis incident solar radiation</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>FSH</td>
<td>sensible heat</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>FSH_G</td>
<td>sensible heat from ground</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>FSH_NODYNLNDUSE</td>
<td>sensible heat</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>FSH_R</td>
<td>Rural sensible heat</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>FSH_U</td>
<td>Urban sensible heat</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>FSH_V</td>
<td>sensible heat from veg</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>FSI24</td>
<td>indirect radiation (last 24hrs)</td>
<td>K</td>
</tr>
<tr>
<td>FSI240</td>
<td>indirect radiation (last 240hrs)</td>
<td>K</td>
</tr>
<tr>
<td>FSM</td>
<td>snow melt heat flux</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>FSM_R</td>
<td>Rural snow melt heat flux</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>FSM_U</td>
<td>Urban snow melt heat flux</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>FSNO</td>
<td>fraction of ground covered by snow</td>
<td>unitless</td>
</tr>
<tr>
<td>FSR</td>
<td>reflected solar radiation</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>FSRND</td>
<td>direct nir reflected solar radiation</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>FSRNDLN</td>
<td>direct nir reflected solar radiation at local noon</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>FSRNI</td>
<td>diffuse nir reflected solar radiation</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>FSRVD</td>
<td>direct vis reflected solar radiation</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>FSRVDLN</td>
<td>direct vis reflected solar radiation at local noon</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>FSRVI</td>
<td>diffuse vis reflected solar radiation</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>FSUN</td>
<td>sunlit fraction of canopy</td>
<td>proportion</td>
</tr>
<tr>
<td>FSUN24</td>
<td>fraction sunlit (last 24hrs)</td>
<td>K</td>
</tr>
<tr>
<td>FSUN240</td>
<td>fraction sunlit (last 240hrs)</td>
<td>K</td>
</tr>
<tr>
<td>FTDD</td>
<td>down direct flux below veg per unit dir flx</td>
<td>proportion</td>
</tr>
<tr>
<td>FTID</td>
<td>down indirect flux below veg per unit dir flx</td>
<td>proportion</td>
</tr>
</tbody>
</table>
Chapter 1. How to customize the configuration for a case with CLM

<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTII</td>
<td>down indirect flux below veg per unit indirect flx</td>
<td>proportion</td>
</tr>
<tr>
<td>FV</td>
<td>friction velocity for dust model</td>
<td>m/s</td>
</tr>
<tr>
<td>FWET</td>
<td>fraction of canopy that is wet</td>
<td>proportion</td>
</tr>
<tr>
<td>GAMMA</td>
<td>total gamma for VOC calc</td>
<td>non</td>
</tr>
<tr>
<td>GAMMAA</td>
<td>gamma A for VOC calc</td>
<td>non</td>
</tr>
<tr>
<td>GAMMAL</td>
<td>gamma L for VOC calc</td>
<td>non</td>
</tr>
<tr>
<td>GAMMAP</td>
<td>gamma P for VOC calc</td>
<td>non</td>
</tr>
<tr>
<td>GAMMAS</td>
<td>gamma S for VOC calc</td>
<td>non</td>
</tr>
<tr>
<td>GAMMAT</td>
<td>gamma T for VOC calc</td>
<td>non</td>
</tr>
<tr>
<td>GC_HEAT1</td>
<td>initial gridcell total heat content</td>
<td>J/m^2</td>
</tr>
<tr>
<td>GC_HEAT2</td>
<td>post land cover change total heat content</td>
<td>J/m^2</td>
</tr>
<tr>
<td>GC_ICE1</td>
<td>initial gridcell total ice content</td>
<td>mm</td>
</tr>
<tr>
<td>GC_ICE2</td>
<td>post land cover change total ice content</td>
<td>mm</td>
</tr>
<tr>
<td>GC_LIQ1</td>
<td>initial gridcell total liq content</td>
<td>mm</td>
</tr>
<tr>
<td>GC_LIQ2</td>
<td>initial gridcell total liq content</td>
<td>mm</td>
</tr>
<tr>
<td>GDD0</td>
<td>Growing degree days base 0C from planting</td>
<td>ddays</td>
</tr>
<tr>
<td>GDD020</td>
<td>Twenty year average of growing degree days base 0C from planting</td>
<td>ddays</td>
</tr>
<tr>
<td>GDD10</td>
<td>Growing degree days base 10C from planting</td>
<td>ddays</td>
</tr>
<tr>
<td>GDD1020</td>
<td>Twenty year average of growing degree days base 10C from planting</td>
<td>ddays</td>
</tr>
<tr>
<td>GDD8</td>
<td>Growing degree days base 8C from planting</td>
<td>ddays</td>
</tr>
<tr>
<td>GDD820</td>
<td>Twenty year average of growing degree days base 8C from planting</td>
<td>ddays</td>
</tr>
<tr>
<td>GDDHARV</td>
<td>Growing degree days (gdd) needed to harvest</td>
<td>ddays</td>
</tr>
<tr>
<td>GDDPLANT</td>
<td>Accumulated growing degree days past planting date for crop</td>
<td>ddays</td>
</tr>
<tr>
<td>GDDTSOI</td>
<td>Growing degree-days from planting (top two soil layers)</td>
<td>ddays</td>
</tr>
<tr>
<td>GDIR</td>
<td>leaf projection in solar direction</td>
<td>proportion</td>
</tr>
<tr>
<td>GPP</td>
<td>gross primary production</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>Name</td>
<td>Long-name</td>
<td>Units</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>GPP</td>
<td>gross primary production</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>GR</td>
<td>total growth respiration</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>GRESP_STORAGE</td>
<td>growth respiration storage</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>GRESP_STORAGE_TO_XFER</td>
<td>growth respiration shift storage to transfer</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>GRESP_XFER</td>
<td>growth respiration transfer</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>GROSS_NMIN</td>
<td>gross rate of N mineralization</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>H2OCAN</td>
<td>intercepted water</td>
<td>mm</td>
</tr>
<tr>
<td>H2OSNO</td>
<td>snow depth (liquid water)</td>
<td>mm</td>
</tr>
<tr>
<td>H2OSNO_TOP</td>
<td>mass of snow in top snow layer</td>
<td>kg/m^2</td>
</tr>
<tr>
<td>H2OSOI</td>
<td>volumetric soil water</td>
<td>mm/mm^3</td>
</tr>
<tr>
<td>HBOT</td>
<td>canopy bottom</td>
<td>m</td>
</tr>
<tr>
<td>HC</td>
<td>heat content of soil/snow/lake</td>
<td>MJ/m^2</td>
</tr>
<tr>
<td>HCSOI</td>
<td>soil heat content</td>
<td>MJ/m^2</td>
</tr>
<tr>
<td>HEAT_FROM_AC</td>
<td>sensible heat flux put into canyon due to heat removed from air conditioning</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>HK</td>
<td>hydraulic conductivity</td>
<td>mm/s</td>
</tr>
<tr>
<td>HR</td>
<td>total heterotrophic respiration</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>HR</td>
<td>total heterotrophic respiration</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>HTOP</td>
<td>canopy top</td>
<td>m</td>
</tr>
<tr>
<td>INIT_GPP</td>
<td>GPP flux before downregulation</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>ISEABEG</td>
<td>index for start of growing season</td>
<td></td>
</tr>
<tr>
<td>ISOPRENE</td>
<td>isoprene flux</td>
<td>uGC/M2/H</td>
</tr>
<tr>
<td>LAISHA</td>
<td>shaded projected leaf area index</td>
<td>none</td>
</tr>
<tr>
<td>LAISUN</td>
<td>sunlit projected leaf area index</td>
<td>none</td>
</tr>
<tr>
<td>LAND_UPTAKE</td>
<td>NEE minus LAND_USE_FLUX, negative for update</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LAND_USE_FLUX</td>
<td>total C emitted from land cover conversion and wood product pools</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LEAFC</td>
<td>leaf C</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>LEAFC</td>
<td>leaf C</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>LEAFC_ALLOC</td>
<td>leaf C allocation</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LEAFC_ALLOC</td>
<td>leaf C allocation</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LEAFC_LOSS</td>
<td>leaf C loss</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LEAFC_LOSS</td>
<td>leaf C loss</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LEAFC_STORAGE</td>
<td>leaf C storage</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>LEAFC_STORAGE_TO_XFER</td>
<td>leaf C shift storage to transfer</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>Name</td>
<td>Long-name</td>
<td>Units</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>LEAFC_TO_LITR1C</td>
<td>leaf C litterfall to litter 1 C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LEAFC_TO_LITR2C</td>
<td>leaf C litterfall to litter 2 C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LEAFC_TO_LITR3C</td>
<td>leaf C litterfall to litter 3 C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LEAFC_TO_LITTER</td>
<td>leaf C litterfall</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LEAFC_XFER</td>
<td>leaf C transfer</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>LEAFC_XFER_TO_LEAFC</td>
<td>leaf C growth from storage</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LEAFN</td>
<td>leaf N</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>LEAFN_STORAGE</td>
<td>leaf N storage</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>LEAFN_STORAGE_TO_XFER</td>
<td>leaf N shift storage to transfer</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>LEAFN_TO_LITR1N</td>
<td>leaf N litterfall to litter 1 N</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>LEAFN_TO_LITR2N</td>
<td>leaf N litterfall to litter 2 N</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>LEAFN_TO_LITR3N</td>
<td>leaf N litterfall to litter 3 N</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>LEAFN_TO_LITTER</td>
<td>leaf N litterfall</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>LEAFN_TO_RETRANSN</td>
<td>leaf N to retranslocated N pool</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>LEAFN_XFER</td>
<td>leaf N transfer</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>LEAFN_XFER_TO_LEAFN</td>
<td>leaf N growth from storage</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>LEAF_MR</td>
<td>leaf maintenance respiration</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LGROW</td>
<td>growing season index (0 or 1)</td>
<td></td>
</tr>
<tr>
<td>LGSF</td>
<td>long growing season factor</td>
<td>proportion</td>
</tr>
<tr>
<td>LITFALL</td>
<td>litterfall (leaves and fine roots)</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LITFIRE</td>
<td>litter fire losses</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LITHR</td>
<td>litter heterotrophic respiration</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LITR1C</td>
<td>litter labile C</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>LITR1C_TO_SOIL1C</td>
<td>decomp. of litter 1 C to SOM 1 C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LITR1N</td>
<td>litter labile N</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>LITR1N_TO_SOIL1N</td>
<td>decomp. of litter 1 N to SOM 1 N</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>LITR1_HR</td>
<td>het. resp. from litter 1 C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LITR2C</td>
<td>litter cellulose C</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>LITR2C_TO_SOIL2C</td>
<td>decomp. of litter 2 C to SOM 2 C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LITR2N</td>
<td>litter cellulose N</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>LITR2N_TO_SOIL2N</td>
<td>decomp. of litter 2 N to SOM 2 N</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>LITR2_HR</td>
<td>het. resp. from litter 2 C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LITR3C</td>
<td>litter lignin C</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>Name</td>
<td>Long-name</td>
<td>Units</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>LITR3C_TO_SOIL3C</td>
<td>decomp. of litter 3 C to SOM 3 C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LITR3N</td>
<td>litter lignin N</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>LITR3N_TO_SOIL3N</td>
<td>decomp. of litter 3 N to SOM 3 N</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>LITR3ashington</td>
<td>het. resp. from litter 3 C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LITTERC</td>
<td>litter C</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>LITTERC</td>
<td>litter C</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>LITTERC.Players</td>
<td>litter C heterotrophic respiration</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LITTERC.Players</td>
<td>litter C heterotrophic respiration</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LITTERC_LOSS</td>
<td>litter C loss</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LITTERC_LOSS</td>
<td>litter C loss</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LIVECROOTC</td>
<td>live coarse root C</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>LIVECROOTC_STORAGE</td>
<td>live coarse root C storage</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>LIVECROOTC_STORAGE_TO_XFER</td>
<td>live coarse root C shift storage to transfer</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LIVECROOTC_TO_DEADCROOTC</td>
<td>coarse root C turnover</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LIVECROOTC_XFER</td>
<td>live coarse root C transfer</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>LIVECROOTC_XFER_TO_LIVECROOT</td>
<td>live coarse root C growth from storage</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LIVECROOTN</td>
<td>live coarse root N</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>LIVECROOTN_STORAGE</td>
<td>live coarse root N storage</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>LIVECROOTN_STORAGE_TO_XFER</td>
<td>live coarse root N shift storage to transfer</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>LIVECROOTN_TO_DEADCROOTN</td>
<td>coarse root N turnover</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>LIVECROOTN_RETRANSN</td>
<td>live coarse root N to retranslocated N pool</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>LIVECROOTN_XFER</td>
<td>live coarse root N transfer</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>LIVECROOTN_XFER_TO_LIVECROOT</td>
<td>live coarse root N growth from storage</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>LIVECROOT_MRI</td>
<td>live coarse root maintenance respiration</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LIVEFR</td>
<td>live fraction for leaf, wood, froot</td>
<td>g/m2</td>
</tr>
<tr>
<td>LIVESTEMC</td>
<td>live stem C</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>LIVESTEMC_STORAGE</td>
<td>live stem C storage</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>LIVESTEMC_STORAGE_TO_XFER</td>
<td>live stem C shift storage to transfer</td>
<td>gC/m^2/s</td>
</tr>
</tbody>
</table>
Chapter 1. How to customize the configuration for a case with CLM

<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIVESTEMC_TO_DEADSTEMC</td>
<td>live stem C turnover</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LIVESTEMC_XFER</td>
<td>live stem C transfer</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>LIVESTEMC_XFER_TO_LIVESTEM</td>
<td>live stem C growth from storage</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LIVESTEMN</td>
<td>live stem N</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>LIVESTEMN_STORAGE</td>
<td>live stem N storage</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>LIVESTEMN_STORAGE_TO_XFER</td>
<td>live stem N shift storage to transfer</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>LIVESTEMN_TO_DEADSTEMN</td>
<td>live stem N turnover</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>LIVESTEMN_TO_RETRANSN</td>
<td>live stem N to retranslocated N pool</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>LIVESTEMN_XFER</td>
<td>live stem N transfer</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>LIVESTEMN_XFER_TO_LIVESTEM</td>
<td>live stem N growth from storage</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>LIVESTEM_MR</td>
<td>live stem maintenance respiration</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>LNCSHA</td>
<td>leaf N concentration per unit projected LAI</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>LNCSUN</td>
<td>leaf N concentration per unit projected LAI</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>LWdown</td>
<td>atmospheric longwave radiation</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>LWup</td>
<td>upwelling longwave radiation</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>ME</td>
<td>moisture of extinction</td>
<td>proportion</td>
</tr>
<tr>
<td>MEAN_FIRE_PROB</td>
<td>e-folding mean of daily fire probability</td>
<td>0-1</td>
</tr>
<tr>
<td>MONOTERP</td>
<td>monoterpene flux</td>
<td>uGC/M2/H</td>
</tr>
<tr>
<td>MR</td>
<td>maintenance respiration</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_CWDC_TO_FIRE</td>
<td>coarse woody debris C fire loss</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_CWDN_TO_FIRE</td>
<td>coarse woody debris N fire loss</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>M_DEADCROOTC_STORAGE_TO_FIRE</td>
<td>dead coarse root C storage fire loss</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_DEADCROOTC_STORAGE_TO_LITR1C</td>
<td>dead coarse root C storage mortality to litter 1 C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_DEADCROOTC_STORAGE_TO_LITTER</td>
<td>dead coarse root C storage mortality</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_DEADCROOTC_TO_CWD</td>
<td>dead coarse root C mortality to coarse woody debris C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_DEADCROOTC_TO_CWD_FIRE</td>
<td>dead coarse root C to woody debris C by fire</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>Name</td>
<td>Long-name</td>
<td>Units</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>M_DEADCROOTC_TO_FIRE</td>
<td>dead coarse root C fire loss</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>M_DEADCROOTC_TO_LITTER</td>
<td>dead coarse root C mortality</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>M_DEADCROOTC_TO_LITTER_FIRE</td>
<td>dead coarse root C fire mortality to litter</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>M_DEADCROOTC_XFER_TO_FIRE</td>
<td>coarse root C transfer fire loss</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>M_DEADCROOTC_XFER_TO_LITTER</td>
<td>coarse root C transfer mortality to litter 1 C</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>M_DEADCROOTC_XFER_TO_LITTER_FIRE</td>
<td>coarse root C transfer mortality</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>M_DEADCROOTN_STORAGE_TO_FIRE</td>
<td>dead coarse root N storage fire loss</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>M_DEADCROOTN_STORAGE_TO_LITTER</td>
<td>dead coarse root N storage mortality to litter 1 N</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>M_DEADCROOTN_STORAGE_TO_LITTER</td>
<td>dead coarse root N storage mortality</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>M_DEADCROOTN_TO_CWDN_FIRE</td>
<td>dead coarse root N mortality to coarse woody debris N by fire</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>M_DEADCROOTN_TO_FIRE</td>
<td>dead coarse root N fire loss</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>M_DEADCROOTN_TO_LITTER</td>
<td>dead coarse root N mortality</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>M_DEADCROOTN_TO_LITTER_FIRE</td>
<td>dead coarse root N fire mortality to litter</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>M_DEADCROOTN_XFER_TO_FIRE</td>
<td>coarse root N transfer fire loss</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>M_DEADCROOTN_XFER_TO_LITTER</td>
<td>coarse root N transfer mortality to litter 1 N</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>M_DEADCROOTN_XFER_TO_LITTER_FIRE</td>
<td>coarse root N transfer mortality</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>M_DEADSTEMC_STORAGE_TO_FIRE</td>
<td>dead C storage fire loss</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>M_DEADSTEMC_STORAGE_TO_LITTER</td>
<td>dead C storage mortality to litter 1 C</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>M_DEADSTEMC_STORAGE_TO_LITTER</td>
<td>dead C storage mortality</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>M_DEADSTEMC_TO_CWDC</td>
<td>dead stem C mortality to coarse woody debris C</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>Name</td>
<td>Long-name</td>
<td>Units</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>M_DEADSTEMC_TO_CWDC</td>
<td>dead stem C to coarse woody debris C by fire</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_DEADSTEMC_TO_FIRE</td>
<td>dead stem C fire loss</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_DEADSTEMC_TO_LITTER</td>
<td>dead stem C mortality</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_DEADSTEMC_TO_LITTER_FIRE</td>
<td>dead stem C fire mortality to litter</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_DEADSTEMC_XFER_TO_FIRE</td>
<td>stem C transfer fire loss</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_DEADSTEMC_XFER_TO_LITTER</td>
<td>stem C transfer mortality to litter 1 C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_DEADSTEMC_XFER_TO_LITTER</td>
<td>stem C transfer mortality</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_DEADSTEMN_STORAGE_TO_FIRE</td>
<td>dead stem N storage fire loss</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>M_DEADSTEMN_STORAGE_TO_LITR1N</td>
<td>dead stem N storage mortality to litter 1 N</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>M_DEADSTEMN_STORAGE_TO_LITTER</td>
<td>dead stem N storage mortality</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>M_DEADSTEMN_TO_CWDN</td>
<td>dead stem N mortality to coarse woody debris N</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>M_DEADSTEMN_TO_CWDN_FIRE</td>
<td>dead stem N to coarse woody debris N by fire</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>M_DEADSTEMN_TO_FIRE</td>
<td>dead stem N fire loss</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>M_DEADSTEMN_TO_LITTER</td>
<td>dead stem N mortality</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>M_DEADSTEMN_TO_LITTER_FIRE</td>
<td>dead stem N fire mortality to litter</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>M_DEADSTEMN_XFER_TO_FIRE</td>
<td>stem N transfer fire loss</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>M_DEADSTEMN_XFER_TO_LITTER</td>
<td>stem N transfer mortality to litter 1 N</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>M_DEADSTEMN_XFER_TO_LITTER</td>
<td>stem N transfer mortality</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>M_FROOTC_STORAGE_TO_FIRE</td>
<td>root C storage fire loss</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_FROOTC_STORAGE_TO_LITR1C</td>
<td>root C storage mortality to litter 1 C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_FROOTC_TO_FIRE</td>
<td>fine root C fire loss</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_FROOTC_TO_LITR1C</td>
<td>fine root C mortality to litter 1 C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>Name</td>
<td>Long-name</td>
<td>Units</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>M_FROOTC_TO_LITR2C</td>
<td>fine root C mortality to litter 2 C</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>M_FROOTC_TO_LITR3C</td>
<td>fine root C mortality to litter 3 C</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>M_FROOTC_TO_LITTER</td>
<td>fine root C mortality</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>M_FROOTC_XFER_TO_FIRE</td>
<td>fine root C transfer fire loss</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>M_FROOTC_XFER_TO_LITR1C</td>
<td>fine root C transfer mortality to litter 1 C</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>M_FROOTC_XFER_TO_LITTER</td>
<td>fine root C transfer mortality</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>M_FROOTN_STORAGE_TO_FIRE</td>
<td>fine root N storage fire loss</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>M_FROOTN_STORAGE_TO_LITR1N</td>
<td>fine root N storage mortality to litter 1 N</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>M_FROOTN_STORAGE_TO_LITTER</td>
<td>fine root N storage mortality</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>M_FROOTN_TO_FIRE</td>
<td>fine root N fire loss</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>M_FROOTN_TO_LITR1N</td>
<td>fine root N mortality to litter 1 N</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>M_FROOTN_TO_LITR2N</td>
<td>fine root N mortality to litter 2 N</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>M_FROOTN_TO_LITR3N</td>
<td>fine root N mortality to litter 3 N</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>M_FROOTN_TO_LITTER</td>
<td>fine root N mortality</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>M_FROOTN_XFER_TO_FIRE</td>
<td>fine root N transfer fire loss</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>M_FROOTN_XFER_TO_LITR1N</td>
<td>fine root N transfer mortality to litter 1 N</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>M_FROOTN_XFER_TO_LITTER</td>
<td>fine root N transfer mortality</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>M_GRESP_STORAGE_TO_FIRE</td>
<td>growth respiration storage fire loss</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>M_GRESP_STORAGE_TO_LITR1C</td>
<td>growth respiration storage mortality to litter 1 C</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>M_GRESP_STORAGE_TO_LITTER</td>
<td>growth respiration storage mortality</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>M_GRESP_XFER_TO_FIRE</td>
<td>growth respiration transfer fire loss</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>M_GRESP_XFER_TO_LITR1C</td>
<td>growth respiration transfer mortality to litter 1 C</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>M_GRESP_XFER_TO_LITTER</td>
<td>growth respiration transfer mortality</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>M_LEAFC_STORAGE_TO_FIRE</td>
<td>leaf C storage fire loss</td>
<td>gC/m²/s</td>
</tr>
</tbody>
</table>
Chapter 1. How to customize the configuration for a case with CLM

<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>M_LEAFC_STORAGE_TO_LITR1C</code></td>
<td>leaf C storage mortality to litter 1 C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td><code>M_LEAFC_STORAGE_TO_LITR2C</code></td>
<td>leaf C storage mortality</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td><code>M_LEAFC_TO_FIRE</code></td>
<td>leaf C fire loss</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td><code>M_LEAFC_TO_LITR1C</code></td>
<td>leaf C mortality to litter 1 C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td><code>M_LEAFC_TO_LITR2C</code></td>
<td>leaf C mortality to litter 2 C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td><code>M_LEAFC_TO_LITR3C</code></td>
<td>leaf C mortality to litter 3 C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td><code>M_LEAFC_TO_LITTER</code></td>
<td>leaf C mortality</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td><code>M_LEAFC_XFER_TO_FIRE</code></td>
<td>leaf C transfer fire loss</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td><code>M_LEAFC_XFER_TO_LITR1C</code></td>
<td>leaf C transfer mortality to litter 1 C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td><code>M_LEAFC_XFER_TO_LITTER</code></td>
<td>leaf C transfer mortality</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td><code>M_LEAFN_STORAGE_TO_FIRE</code></td>
<td>leaf N storage fire loss</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td><code>M_LEAFN_STORAGE_TO_LITR1N</code></td>
<td>leaf N storage mortality to litter 1 N</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td><code>M_LEAFN_STORAGE_TO_LITR2N</code></td>
<td>leaf N storage mortality</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td><code>M_LEAFN_TO_FIRE</code></td>
<td>leaf N fire loss</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td><code>M_LEAFN_TO_LITR1N</code></td>
<td>leaf N mortality to litter 1 N</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td><code>M_LEAFN_TO_LITR2N</code></td>
<td>leaf N mortality to litter 2 N</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td><code>M_LEAFN_TO_LITR3N</code></td>
<td>leaf N mortality to litter 3 N</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td><code>M_LEAFN_TO_LITTER</code></td>
<td>leaf N mortality</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td><code>M_LEAFN_XFER_TO_FIRE</code></td>
<td>leaf N transfer fire loss</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td><code>M_LEAFN_XFER_TO_LITR1N</code></td>
<td>leaf N transfer mortality to litter 1 N</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td><code>M_LEAFN_XFER_TO_LITTER</code></td>
<td>leaf N transfer mortality</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td><code>M_LITR1C_TO_FIRE</code></td>
<td>litter 1 C fire loss</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td><code>M_LITR1N_TO_FIRE</code></td>
<td>litter 1 N fire loss</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td><code>M_LITR2C_TO_FIRE</code></td>
<td>litter 2 C fire loss</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td><code>M_LITR2N_TO_FIRE</code></td>
<td>litter 2 N fire loss</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td><code>M_LITR3C_TO_FIRE</code></td>
<td>litter 3 C fire loss</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td><code>M_LITR3N_TO_FIRE</code></td>
<td>litter 3 N fire loss</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td><code>M_LIVECROOTC_STORAGE_TO_FIRE</code></td>
<td>root C storage fire loss</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td><code>M_LIVECROOTC_STORAGE_TO_LITR1C</code></td>
<td>root C storage mortality to litter 1 C</td>
<td>gC/m^2/s</td>
</tr>
</tbody>
</table>
Chapter 1. How to customize the configuration for a case with CLM

<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_LIVECROOTC_STORAGE_TO_LITTER</td>
<td>live coarse root C storage mortality</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_LIVECROOTC_TO_CWDC</td>
<td>live coarse root C mortality to coarse woody debris C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_LIVECROOTC_TO_FIRE</td>
<td>live coarse root C fire loss</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_LIVECROOTC_TO_LITTER</td>
<td>live coarse root C mortality</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_LIVECROOTC_XFER_TO_FIRE</td>
<td>coarse root C transfer fire loss</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_LIVECROOTC_XFER_TO_LITTER1</td>
<td>coarse root C transfer mortality to litter 1 C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_LIVECROOTC_XFER_TO_LITTER</td>
<td>coarse root C transfer mortality</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_LIVECROOTN_STORAGE_TO_FIRE</td>
<td>root N storage fire loss</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>M_LIVECROOTN_STORAGE_TO_LITTER1</td>
<td>root N storage mortality to litter 1 N</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>M_LIVECROOTN_STORAGE_TO_LITTER</td>
<td>root N storage mortality</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>M_LIVECROOTN_TO_CWDN</td>
<td>live coarse root N mortality to coarse woody debris N</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>M_LIVECROOTN_TO_FIRE</td>
<td>live coarse root N fire loss</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>M_LIVECROOTN_TO_LITTER</td>
<td>live coarse root N mortality</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>M_LIVECROOTN_XFER_TO_FIRE</td>
<td>coarse root N transfer fire loss</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>M_LIVECROOTN_XFER_TO_LITTER1</td>
<td>coarse root N transfer mortality to litter 1 N</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>M_LIVECROOTN_XFER_TO_LITTER</td>
<td>coarse root N transfer mortality</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>M_LIVESTEMC_STORAGE_TO_FIRE</td>
<td>C storage fire loss</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_LIVESTEMC_TO_LITTER</td>
<td>storage to litter 1 C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_LIVESTEMC_TO_LITTER</td>
<td>storage mortality</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_LIVESTEMC_TO_CWDC</td>
<td>live stem C mortality to coarse woody debris C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_LIVESTEMC_TO_FIRE</td>
<td>live stem C fire loss</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>M_LIVESTEMC_TO_LITTER</td>
<td>live stem C mortality</td>
<td>gC/m^2/s</td>
</tr>
</tbody>
</table>
Chapter 1. How to customize the configuration for a case with CLM

<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>M_LIVESTEMC_XFER_TO_FIRE</code></td>
<td>live stem C transfer fire loss</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td><code>M_LIVESTEMC_XFER_TO_LITTER</code></td>
<td>live stem C transfer mortality to litter 1 C</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td><code>M_LIVESTEMC_XFER_TO_LITR1C</code></td>
<td>live stem C transfer mortality to litter 1 C</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td><code>M_LIVESTEMN_STORAGE_TO_FIRE</code></td>
<td>live stem N storage fire loss</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td><code>M_LIVESTEMN_STORAGE_TO_LITR1N</code></td>
<td>live stem N storage mortality to litter 1 N</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td><code>M_LIVESTEMN_STORAGE_TO_LITTER</code></td>
<td>live stem N storage mortality</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td><code>M_LIVESTEMN_TO_CWDN</code></td>
<td>live stem N mortality to coarse woody debris N</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td><code>M_LIVESTEMN_TO_FIRE</code></td>
<td>live stem N fire loss</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td><code>M_LIVESTEMN_TO_LITTER</code></td>
<td>live stem N mortality</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td><code>M_LIVESTEMN_XFER_TO_FIRE</code></td>
<td>live stem N transfer fire loss</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td><code>M_LIVESTEMN_XFER_TO_LITR1N</code></td>
<td>live stem N transfer mortality to litter 1 N</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td><code>M_LIVESTEMN_XFER_TO_LITTER</code></td>
<td>live stem N transfer mortality</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td><code>M_RETRANSN_TO_FIRE</code></td>
<td>retranslocated N pool fire loss</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td><code>M_RETRANSN_TO_LITR1N</code></td>
<td>retranslocated N pool mortality to litter 1 N</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td><code>M_RETRANSN_TO_LITTER</code></td>
<td>retranslocated N pool mortality</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td><code>NBP</code></td>
<td>net biome production, includes fire, landuse, and harvest flux, positive for sink</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td><code>NDEPLOY</code></td>
<td>total N deployed in new growth</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td><code>NDEP_TO_SMINN</code></td>
<td>atmospheric N deposition to soil mineral N</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td><code>NEE</code></td>
<td>net ecosystem exchange of carbon, includes fire, landuse, harvest, and hrv_xsmrpool flux, positive for source</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td><code>NEE</code></td>
<td>net ecosystem exchange (GPP, Re, and fire)</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td><code>NEP</code></td>
<td>net ecosystem production, excludes fire, landuse, and harvest flux, positive for sink</td>
<td>gC/m²/s</td>
</tr>
</tbody>
</table>
Chapter 1. How to customize the configuration for a case with CLM

<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEP</td>
<td>net ecosystem production</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>NET_NMIN</td>
<td>net rate of N mineralization</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>NFIX_TO_SMINN</td>
<td>symbiotic/asymbiotic N fixation to soil mineral N</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>NPOOL</td>
<td>temporary plant N pool</td>
<td>gN/m²</td>
</tr>
<tr>
<td>NPOOL_TO_DEADCROOTN</td>
<td>allocation to dead coarse root N</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>NPOOL_TO_DEADCROOTN_STORAGE</td>
<td>allocation to dead coarse root N storage</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>NPOOL_TO_DEADSTEMN</td>
<td>allocation to dead stem N</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>NPOOL_TO_DEADSTEMN_STORAGE</td>
<td>allocation to dead stem N storage</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>NPOOL_TO_FROOTN</td>
<td>allocation to fine root N</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>NPOOL_TO_FROOTN_STORAGE</td>
<td>allocation to fine root N storage</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>NPOOL_TO_LEAFN</td>
<td>allocation to leaf N</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>NPOOL_TO_LEAFN_STORAGE</td>
<td>allocation to leaf N storage</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>NPOOL_TO_LIVECROOTN</td>
<td>allocation to live coarse root N</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>NPOOL_TO_LIVECROOTN_STORAGE</td>
<td>allocation to live coarse root N storage</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>NPOOL_TO_LIVESTEMN</td>
<td>allocation to live stem N</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>NPOOL_TO_LIVESTEMN_STORAGE</td>
<td>allocation to live stem N storage</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>NPP</td>
<td>net primary production</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>NPP</td>
<td>net primary production</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>NSTEPBEG</td>
<td>nstep at start of growing season</td>
<td></td>
</tr>
<tr>
<td>N_ALLOMETRY</td>
<td>N allocation index</td>
<td>none</td>
</tr>
<tr>
<td>OCDEP</td>
<td>total OC deposition (dry+wet) from atmosphere</td>
<td>kg/m²/s</td>
</tr>
<tr>
<td>OFFSET_COUNTER</td>
<td>offset days counter</td>
<td>days</td>
</tr>
<tr>
<td>OFFSET_FDD</td>
<td>offset freezing degree days counter</td>
<td>C degree-days</td>
</tr>
<tr>
<td>OFFSET_FLAG</td>
<td>offset flag</td>
<td>none</td>
</tr>
<tr>
<td>OFFSET_SWI</td>
<td>offset soil water index</td>
<td>none</td>
</tr>
<tr>
<td>OMEGA</td>
<td>fraction of intercepted radiation that is scattered</td>
<td>proportion</td>
</tr>
<tr>
<td>ONSET_COUNTER</td>
<td>onset days counter</td>
<td>days</td>
</tr>
<tr>
<td>ONSET_FDD</td>
<td>onset freezing degree days counter</td>
<td>C degree-days</td>
</tr>
<tr>
<td>ONSET_FLAG</td>
<td>onset flag</td>
<td>none</td>
</tr>
<tr>
<td>Name</td>
<td>Long-name</td>
<td>Units</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ONSET_GDD</td>
<td>onset growing degree days</td>
<td>C degree-days</td>
</tr>
<tr>
<td>ONSET_GDDFLAG</td>
<td>onset flag for growing degree day sum</td>
<td>none</td>
</tr>
<tr>
<td>ONSET_SWI</td>
<td>onset soil water index</td>
<td>none</td>
</tr>
<tr>
<td>ORVOC</td>
<td>other reactive VOC flux</td>
<td>uGC/M2/H</td>
</tr>
<tr>
<td>OVOC</td>
<td>other VOC flux</td>
<td>uGC/M2/H</td>
</tr>
<tr>
<td>PAR240_shade</td>
<td>shade PAR (240 hrs)</td>
<td>umol/m2/s</td>
</tr>
<tr>
<td>PAR240_sun</td>
<td>sunlit PAR (240 hrs)</td>
<td>umol/m2/s</td>
</tr>
<tr>
<td>PAR24_shade</td>
<td>shade PAR (24 hrs)</td>
<td>umol/m2/s</td>
</tr>
<tr>
<td>PAR24_sun</td>
<td>sunlit PAR (24 hrs)</td>
<td>umol/m2/s</td>
</tr>
<tr>
<td>PARSHA</td>
<td>average absorbed PAR for shaded leaves</td>
<td>W/m^2</td>
</tr>
<tr>
<td>PARSUN</td>
<td>average absorbed PAR for sunlit leaves</td>
<td>W/m^2</td>
</tr>
<tr>
<td>PAR_shade</td>
<td>shade PAR</td>
<td>umol/m2/s</td>
</tr>
<tr>
<td>PAR_sun</td>
<td>sunlit PAR</td>
<td>umol/m2/s</td>
</tr>
<tr>
<td>PBOT</td>
<td>atmospheric pressure</td>
<td>Pa</td>
</tr>
<tr>
<td>PCO2</td>
<td>atmospheric partial pressure of CO2</td>
<td>Pa</td>
</tr>
<tr>
<td>PET</td>
<td>Potential Evapotranspiration</td>
<td>mm h2o/s</td>
</tr>
<tr>
<td>PFT_CTRUNC</td>
<td>pft-level sink for C truncation</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>PFT_FIRE_CLOSS</td>
<td>total pft-level fire C loss</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>PFT_FIRE_NLOSS</td>
<td>total pft-level fire N loss</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>PFT_NTRUNC</td>
<td>pft-level sink for N truncation</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>PLAI</td>
<td>Prognostic Leaf Area Index</td>
<td>m2/m2</td>
</tr>
<tr>
<td>PLANT_CALLOC</td>
<td>total allocated C flux</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>PLANT_NALLOC</td>
<td>total allocated N flux</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>PLANT_NDEMAND</td>
<td>N flux required to support initial GPP</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>POTENTIAL_IMMOB</td>
<td>potential N immobilization</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>PREV_DAYL</td>
<td>daylength from previous timestep</td>
<td>s</td>
</tr>
<tr>
<td>PREV_FROOTC_TO_LITTER</td>
<td>previous timestep froot C litterfall flux</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>PREV_LEAFC_TO_LITTER</td>
<td>previous timestep leaf C litterfall flux</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>PROD100C</td>
<td>100-yr wood product C</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>PROD100C_LOSS</td>
<td>loss from 100-yr wood product pool</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>PROD100N</td>
<td>100-yr wood product N</td>
<td>gN/m^2</td>
</tr>
</tbody>
</table>
Chapter 1. How to customize the configuration for a case with CLM

<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROD100N_LOSS</td>
<td>loss from 100-yr wood product pool</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>PROD10C</td>
<td>10-yr wood product C</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>PROD10C_LOSS</td>
<td>loss from 10-yr wood product pool</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>PROD10N</td>
<td>10-yr wood product N</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>PROD10N_LOSS</td>
<td>loss from 10-yr wood product pool</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>PRODUCT_CLOSS</td>
<td>total carbon loss from wood product pools</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>PRODUCT_NLOSS</td>
<td>total N loss from wood product pools</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>PSNSHA</td>
<td>shaded leaf photosynthesis</td>
<td>umolCO2/m^2/s</td>
</tr>
<tr>
<td>PSNSHADE_TO_CPOOL</td>
<td>C fixation from shaded canopy</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>PSNSUN</td>
<td>sunlit leaf photosynthesis</td>
<td>umolCO2/m^2/s</td>
</tr>
<tr>
<td>PSNSUN_TO_CPOOL</td>
<td>C fixation from sunlit canopy</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>PSurf</td>
<td>surface pressure</td>
<td>Pa</td>
</tr>
<tr>
<td>Q2M</td>
<td>2m specific humidity</td>
<td>kg/kg</td>
</tr>
<tr>
<td>QBOT</td>
<td>atmospheric specific humidity</td>
<td>kg/kg</td>
</tr>
<tr>
<td>QCHANR</td>
<td>RTM river flow: LIQ</td>
<td>m3/s</td>
</tr>
<tr>
<td>QCHANR_ICE</td>
<td>RTM river flow: ICE</td>
<td>m3/s</td>
</tr>
<tr>
<td>QCHARGE</td>
<td>aquifer recharge rate</td>
<td>mm/s</td>
</tr>
<tr>
<td>QCHOCNR</td>
<td>RTM river discharge into ocean: LIQ</td>
<td>m3/s</td>
</tr>
<tr>
<td>QCHOCNR_ICE</td>
<td>RTM river discharge into ocean: ICE</td>
<td>m3/s</td>
</tr>
<tr>
<td>QDRAI</td>
<td>sub-surface drainage</td>
<td>mm/s</td>
</tr>
<tr>
<td>QDRIP</td>
<td>throughfall</td>
<td>mm/s</td>
</tr>
<tr>
<td>QFLX_DEW_GRND</td>
<td>ground surface dew formation</td>
<td>mm H2O/s</td>
</tr>
<tr>
<td>QFLX_DEW_SNOW</td>
<td>surface dew added to snow pack</td>
<td>mm H2O/s</td>
</tr>
<tr>
<td>QFLX_EVAP_TOT</td>
<td>qflx_evap_soi + qflx_evap_can + qflx_tran_veg</td>
<td>mm H2O/s</td>
</tr>
<tr>
<td>QFLX_EVAP_VEG</td>
<td>vegetation evaporation</td>
<td>mm H2O/s</td>
</tr>
<tr>
<td>QFLX_ICE_DYNBAL</td>
<td>ice dynamic land cover change conversion runoff flux</td>
<td>mm/s</td>
</tr>
<tr>
<td>QFLX_LIQ_DYNBAL</td>
<td>liq dynamic land cover change conversion runoff flux</td>
<td>mm/s</td>
</tr>
<tr>
<td>QFLX_RAIN_GRND</td>
<td>rain on ground after interception</td>
<td>mm H2O/s</td>
</tr>
<tr>
<td>QFLX_SNOW_GRND</td>
<td>snow on ground after interception</td>
<td>mm H2O/s</td>
</tr>
<tr>
<td>Name</td>
<td>Long-name</td>
<td>Units</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>QFLX_SUB_SNOW</td>
<td>sublimation rate from snow pack</td>
<td>mm H2O/s</td>
</tr>
<tr>
<td>QICE</td>
<td>ice growth/melt</td>
<td>mm/s</td>
</tr>
<tr>
<td>QICEYR</td>
<td>ice growth/melt</td>
<td>mm/s</td>
</tr>
<tr>
<td>QINFL</td>
<td>infiltration</td>
<td>mm/s</td>
</tr>
<tr>
<td>QINTR</td>
<td>interception</td>
<td>mm/s</td>
</tr>
<tr>
<td>QIRRIG</td>
<td>water added through irrigation</td>
<td>mm/s</td>
</tr>
<tr>
<td>QMELT</td>
<td>snow melt</td>
<td>mm/s</td>
</tr>
<tr>
<td>QOVER</td>
<td>surface runoff</td>
<td>mm/s</td>
</tr>
<tr>
<td>QRGWL</td>
<td>surface runoff at glaciers (liquid only), wetlands, lakes</td>
<td>mm/s</td>
</tr>
<tr>
<td>QRUNOFF</td>
<td>total liquid runoff (does not include QSNWCPICE)</td>
<td>mm/s</td>
</tr>
<tr>
<td>QRUNOFF_NODYNLNDUSE</td>
<td>total liquid runoff (does not include QSNWCPICE)</td>
<td>mm/s</td>
</tr>
<tr>
<td>QRUNOFF_R</td>
<td>Rural total runoff</td>
<td>mm/s</td>
</tr>
<tr>
<td>QRUNOFF_U</td>
<td>Urban total runoff</td>
<td>mm/s</td>
</tr>
<tr>
<td>QSNWCPICE</td>
<td>excess snowfall due to snow capping</td>
<td>mm/s</td>
</tr>
<tr>
<td>QSNWCPICE_NODYNLNDUSE</td>
<td>excess snowfall due to snow capping</td>
<td>mm H2O/s</td>
</tr>
<tr>
<td>QSOIL</td>
<td>ground evaporation</td>
<td>mm/s</td>
</tr>
<tr>
<td>QTOPSOIL</td>
<td>water input to surface</td>
<td>mm/s</td>
</tr>
<tr>
<td>QVEGE</td>
<td>canopy evaporation</td>
<td>mm/s</td>
</tr>
<tr>
<td>QVEGT</td>
<td>canopy transpiration</td>
<td>mm/s</td>
</tr>
<tr>
<td>Qair</td>
<td>atmospheric specific humidity</td>
<td>kg/kg</td>
</tr>
<tr>
<td>Qanth</td>
<td>anthropogenic heat flux</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>Qh</td>
<td>sensible heat</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>Qle</td>
<td>total evaporation</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>Qstor</td>
<td>storage heat flux (includes snowmelt)</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>Qtau</td>
<td>momentum flux</td>
<td>kg/m/s^2</td>
</tr>
<tr>
<td>RAIN</td>
<td>atmospheric rain</td>
<td>mm/s</td>
</tr>
<tr>
<td>RAINATM</td>
<td>atmospheric rain forcing</td>
<td>mm/s</td>
</tr>
<tr>
<td>RAINFM2A</td>
<td>land rain on atm grid</td>
<td>mm/s</td>
</tr>
<tr>
<td>RAM1</td>
<td>aerodynamical resistance</td>
<td>s/m</td>
</tr>
<tr>
<td>RC13_CANAIR</td>
<td>C13/C(12+13) for canopy air</td>
<td>proportion</td>
</tr>
<tr>
<td>Name</td>
<td>Long-name</td>
<td>Units</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>---------------------</td>
</tr>
<tr>
<td>RC13_PSNSHA</td>
<td>C13/C(12+13) for shaded photosynthesis</td>
<td>proportion</td>
</tr>
<tr>
<td>RC13_PSNSUN</td>
<td>C13/C(12+13) for sunlit photosynthesis</td>
<td>proportion</td>
</tr>
<tr>
<td>RESP_C</td>
<td>Amt. of Carbon lost to atm by pool</td>
<td>g/m2/s</td>
</tr>
<tr>
<td>RETRANSN</td>
<td>plant pool of retranslocated N</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>RETRANSN_TO_NPOOL</td>
<td>deployment of retranslocated N</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>RH</td>
<td>atmospheric relative humidity</td>
<td>%</td>
</tr>
<tr>
<td>RH2M</td>
<td>2m relative humidity</td>
<td>%</td>
</tr>
<tr>
<td>RH2M_R</td>
<td>Rural 2m specific humidity</td>
<td>%</td>
</tr>
<tr>
<td>RH2M_U</td>
<td>Urban 2m relative humidity</td>
<td>%</td>
</tr>
<tr>
<td>ROOTFR</td>
<td>fraction of roots in each soil layer</td>
<td>proportion</td>
</tr>
<tr>
<td>ROOTR</td>
<td>effective fraction of roots in each soil layer</td>
<td>proportion</td>
</tr>
<tr>
<td>ROOTR_COLUMN</td>
<td>effective fraction of roots in each soil layer</td>
<td>proportion</td>
</tr>
<tr>
<td>RR</td>
<td>root respiration (fine root MR + total root GR)</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>RRESIS</td>
<td>root resistance in each soil layer</td>
<td>proportion</td>
</tr>
<tr>
<td>RSSHA</td>
<td>shaded leaf stomatal resistance</td>
<td>s/m</td>
</tr>
<tr>
<td>RSSUN</td>
<td>sunlit leaf stomatal resistance</td>
<td>s/m</td>
</tr>
<tr>
<td>Rainf</td>
<td>atmospheric rain</td>
<td>mm/s</td>
</tr>
<tr>
<td>Rnet</td>
<td>net radiation</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>SABG</td>
<td>solar rad absorbed by ground</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>SABV</td>
<td>solar rad absorbed by veg</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>SEEDC</td>
<td>pool for seeding new PFTs</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>SEEDN</td>
<td>pool for seeding new PFTs</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>SHA_AID</td>
<td>shade canopy absorbed indirect from direct</td>
<td>W/m^2</td>
</tr>
<tr>
<td>SHA_AII</td>
<td>shade canopy absorbed indirect from indirect</td>
<td>W/m^2</td>
</tr>
<tr>
<td>SHA_ALF</td>
<td>shade canopy total absorbed by leaves</td>
<td>W/m^2</td>
</tr>
<tr>
<td>SHA_APERLAI</td>
<td>shade canopy total absorbed per unit LAI</td>
<td>W/m^2</td>
</tr>
<tr>
<td>SHA_ATOT</td>
<td>shade canopy total absorbed</td>
<td>W/m^2</td>
</tr>
<tr>
<td>SHA_FAID</td>
<td>fraction shade canopy absorbed indirect from direct</td>
<td>proportion</td>
</tr>
</tbody>
</table>
Chapter 1. How to customize the configuration for a case with CLM

<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHA_FAII</td>
<td>fraction shade canopy absorbed indirect from indirect</td>
<td>proportion</td>
</tr>
<tr>
<td>SLASHA</td>
<td>specific leaf area for shaded canopy, projected area basis</td>
<td>m^2/gC</td>
</tr>
<tr>
<td>SLASUN</td>
<td>specific leaf area for sunlit canopy, projected area basis</td>
<td>m^2/gC</td>
</tr>
<tr>
<td>SMINN</td>
<td>soil mineral N</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>SMINN_LEACHED</td>
<td>soil mineral N pool loss to leaching</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>SMINN_TO_DENIT_EXCESS</td>
<td>denitrification from excess mineral N pool</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>SMINN_TO_DENIT_L1S1</td>
<td>denitrification for decomp. of litter 1 to SOM 1</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>SMINN_TO_DENIT_L2S2</td>
<td>denitrification for decomp. of litter 2 to SOM 2</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>SMINN_TO_DENIT_L3S3</td>
<td>denitrification for decomp. of litter 3 to SOM 3</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>SMINN_TO_DENIT_S1S2</td>
<td>denitrification for decomp. of SOM 1 to SOM 2</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>SMINN_TO_DENIT_S2S3</td>
<td>denitrification for decomp. of SOM 2 to SOM 3</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>SMINN_TO_DENIT_S3S4</td>
<td>denitrification for decomp. of SOM 3 to SOM 4</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>SMINN_TO_DENIT_S4</td>
<td>denitrification for decomp. of SOM 4</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>SMINN_TO_NPOOL</td>
<td>deployment of soil mineral N uptake</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>SMINN_TO_PLANT</td>
<td>plant uptake of soil mineral N</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>SMINN_TO_SOIL1N_L1</td>
<td>mineral N flux for decomp. of litter 1 to SOM 1</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>SMINN_TO_SOIL2N_L2</td>
<td>mineral N flux for decomp. of litter 2 to SOM 2</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>SMINN_TO_SOIL2N_S1</td>
<td>mineral N flux for decomp. of SOM 1 to SOM 2</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>SMINN_TO_SOIL3N_L3</td>
<td>mineral N flux for decomp. of litter 3 to SOM 3</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>SMINN_TO_SOIL3N_S2</td>
<td>mineral N flux for decomp. of SOM 2 to SOM 3</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>SMINN_TO_SOIL4N_S3</td>
<td>mineral N flux for decomp. of SOM 3 to SOM 4</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>SMOIST</td>
<td>Soil moisture for top 30cm</td>
<td>mm3/mm3</td>
</tr>
<tr>
<td>SMP</td>
<td>soil matric potential</td>
<td>mm</td>
</tr>
<tr>
<td>Name</td>
<td>Long-name</td>
<td>Units</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>SNOAERFRC2L</td>
<td>surface forcing of all aerosols in snow, averaged only when snow is present (land)</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>SNOAERFRCL</td>
<td>surface forcing of all aerosols in snow (land)</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>SNOBCFRC2L</td>
<td>surface forcing of BC in snow, averaged only when snow is present (land)</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>SNOBCFRCL</td>
<td>surface forcing of BC in snow (land)</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>SNOBCMCL</td>
<td>mass of BC in snow column</td>
<td>kg/m^2</td>
</tr>
<tr>
<td>SNOBCMSL</td>
<td>mass of BC in top snow layer</td>
<td>kg/m^2</td>
</tr>
<tr>
<td>SNODSTFRC2L</td>
<td>surface forcing of dust in snow, averaged only when snow is present (land)</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>SNODSTFRCL</td>
<td>surface forcing of dust in snow (land)</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>SNODSTMCL</td>
<td>mass of dust in snow column</td>
<td>kg/m^2</td>
</tr>
<tr>
<td>SNODSTMSL</td>
<td>mass of dust in top snow layer</td>
<td>kg/m^2</td>
</tr>
<tr>
<td>SNOFSDSND</td>
<td>direct nir incident solar radiation on snow</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>SNOFSDSNI</td>
<td>diffuse nir incident solar radiation on snow</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>SNOFSDSVD</td>
<td>direct vis incident solar radiation on snow</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>SNOFSDSVI</td>
<td>diffuse vis incident solar radiation on snow</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>SNOFSRND</td>
<td>direct nir reflected solar radiation from snow</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>SNOFSRNI</td>
<td>diffuse nir reflected solar radiation from snow</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>SNOFSRVD</td>
<td>direct vis reflected solar radiation from snow</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>SNOFSRVI</td>
<td>diffuse vis reflected solar radiation from snow</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>SNOLIQFL</td>
<td>top snow layer liquid water fraction (land)</td>
<td>fraction</td>
</tr>
<tr>
<td>SNOOFCFRC2L</td>
<td>surface forcing of OC in snow, averaged only when snow is present (land)</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>SNOOCFRCL</td>
<td>surface forcing of OC in snow (land)</td>
<td>watt/m^2</td>
</tr>
</tbody>
</table>
Chapter 1. How to customize the configuration for a case with CLM

<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNOOCMCL</td>
<td>mass of OC in snow column</td>
<td>kg/m²</td>
</tr>
<tr>
<td>SNOOCMSL</td>
<td>mass of OC in top snow layer</td>
<td>kg/m²</td>
</tr>
<tr>
<td>SNORDSL</td>
<td>top snow layer effective grain radius</td>
<td>m⁻⁶</td>
</tr>
<tr>
<td>SNOTTOPL</td>
<td>snow temperature (top layer)</td>
<td>K/m</td>
</tr>
<tr>
<td>SNOW</td>
<td>atmospheric snow</td>
<td>mm/s</td>
</tr>
<tr>
<td>SNOWATM</td>
<td>atmospheric snow forcing</td>
<td>mm/s</td>
</tr>
<tr>
<td>SNOWATM</td>
<td>atmospheric snow forcing</td>
<td>mm/s</td>
</tr>
<tr>
<td>SNOWDP</td>
<td>snow height</td>
<td>m</td>
</tr>
<tr>
<td>SNOWFM2A</td>
<td>land snow on atm grid</td>
<td>mm/s</td>
</tr>
<tr>
<td>SNOWICE</td>
<td>snow ice</td>
<td>kg/m²</td>
</tr>
<tr>
<td>SNOWLIQ</td>
<td>snow liquid water</td>
<td>kg/m²</td>
</tr>
<tr>
<td>SNOdTdzL</td>
<td>top snow layer temperature gradient (land)</td>
<td>K/m</td>
</tr>
<tr>
<td>SOIL1C</td>
<td>soil organic matter C (fast pool)</td>
<td>gC/m²</td>
</tr>
<tr>
<td>SOIL1C_TO_SOIL2C</td>
<td>decomp. of SOM 1 C to SOM 2 C</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>SOIL1N</td>
<td>soil organic matter N (fast pool)</td>
<td>gN/m²</td>
</tr>
<tr>
<td>SOIL1N_TO_SOIL2n</td>
<td>decomp. of SOM 1 N to SOM 2 N</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>SOIL1_HR</td>
<td>het. resp. from SOM 1 C</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>SOIL2C</td>
<td>soil organic matter C (medium pool)</td>
<td>gC/m²</td>
</tr>
<tr>
<td>SOIL2C_TO_SOIL3C</td>
<td>decomp. of SOM 2 C to SOM 3 C</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>SOIL2N</td>
<td>soil organic matter N (medium pool)</td>
<td>gN/m²</td>
</tr>
<tr>
<td>SOIL2N_TO_SOIL3N</td>
<td>decomp. of SOM 2 N to SOM 3 N</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>SOIL2_HR</td>
<td>het. resp. from SOM 2 C</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>SOIL3C</td>
<td>soil organic matter C (slow pool)</td>
<td>gC/m²</td>
</tr>
<tr>
<td>SOIL3C_TO_SOIL4C</td>
<td>decomp. of SOM 3 C to SOM 4 C</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>SOIL3N</td>
<td>soil organic matter N (slow pool)</td>
<td>gN/m²</td>
</tr>
<tr>
<td>SOIL3N_TO_SOIL4N</td>
<td>decomp. of SOM 3 N to SOM 4 N</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>SOIL3_HR</td>
<td>het. resp. from SOM 3 C</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>SOIL4C</td>
<td>soil organic matter C (slowest pool)</td>
<td>gC/m²</td>
</tr>
<tr>
<td>Name</td>
<td>Long-name</td>
<td>Units</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>SOIL4N</td>
<td>soil orgainc matter N (slowest pool)</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>SOIL4N_TO_SMINN</td>
<td>N mineralization for decompo. of SOM 4</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>SOIL4_HR</td>
<td>het. resp. from SOM 4 C</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>SOILC</td>
<td>soil C</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>SOILC</td>
<td>total soil organic matter C (excluding CWDC and LITTERC)</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>SOILC_HR</td>
<td>soil C heterotrophic respiration</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>SOILC_HR</td>
<td>soil heterotrophic respiration</td>
<td>gC/m2</td>
</tr>
<tr>
<td>SOILC_LOSS</td>
<td>soil C loss</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>SOILC_LOSS</td>
<td>soil C loss</td>
<td>gC/m2/s</td>
</tr>
<tr>
<td>SOILICE</td>
<td>soil ice</td>
<td>kg/m2</td>
</tr>
<tr>
<td>SOILLIQ</td>
<td>soil liquid water</td>
<td>kg/m2</td>
</tr>
<tr>
<td>SOILPSI</td>
<td>soil water potential in each soil layer</td>
<td>MPa</td>
</tr>
<tr>
<td>SOILT</td>
<td>Soil temperature for top 30cm</td>
<td>deg C</td>
</tr>
<tr>
<td>SOILWATER_10CM</td>
<td>soil liquid water + ice in top 10cm of soil</td>
<td>kg/m2</td>
</tr>
<tr>
<td>SOMFIRE</td>
<td>soil organic matter fire losses</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>SOMHR</td>
<td>soil organic matter heterotrophic respiration</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>SR</td>
<td>total soil respiration (HR + root resp)</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>STORAGE_GR</td>
<td>growth resp for growth sent to storage for later display</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>STORVEGC</td>
<td>stored vegetation carbon, excluding cpool</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>STORVEGNN</td>
<td>stored vegetation nitrogen</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>STRESSSCD</td>
<td>cold + drought stress function for leaf loss</td>
<td></td>
</tr>
<tr>
<td>STRESST</td>
<td>temperature stress function for leaf loss</td>
<td></td>
</tr>
<tr>
<td>STRESSSW</td>
<td>water stress function for leaf loss</td>
<td></td>
</tr>
<tr>
<td>SUN_ADD</td>
<td>sun canopy absorbed direct from direct</td>
<td>W/m^2</td>
</tr>
<tr>
<td>SUN_AID</td>
<td>sun canopy absorbed indirect from direct</td>
<td>W/m^2</td>
</tr>
<tr>
<td>SUN_AII</td>
<td>sun canopy absorbed indirect from indirect</td>
<td>W/m^2</td>
</tr>
</tbody>
</table>
Chapter 1. How to customize the configuration for a case with CLM

<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUN_ALF</td>
<td>sun canopy total absorbed by leaves</td>
<td>W/m^2</td>
</tr>
<tr>
<td>SUN_APERLAI</td>
<td>sun canopy total absorbed per unit LAI</td>
<td>W/m^2</td>
</tr>
<tr>
<td>SUN_ATOT</td>
<td>sun canopy total absorbed</td>
<td>W/m^2</td>
</tr>
<tr>
<td>SUN_FAID</td>
<td>fraction sun canopy absorbed indirect from direct</td>
<td>proportion</td>
</tr>
<tr>
<td>SUN_FAII</td>
<td>fraction sun canopy absorbed indirect from indirect</td>
<td>proportion</td>
</tr>
<tr>
<td>SUPPLEMENT_TO_SMNN</td>
<td>supplemental N supply</td>
<td>gN/m^2/s</td>
</tr>
<tr>
<td>SWdown</td>
<td>atmospheric incident solar radiation</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>SWup</td>
<td>upwelling shortwave radiation</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>SoilAlpha</td>
<td>factor limiting ground evap</td>
<td>unitless</td>
</tr>
<tr>
<td>SoilAlpha_U</td>
<td>urban factor limiting ground evap</td>
<td>unitless</td>
</tr>
<tr>
<td>T10</td>
<td>10-day running mean of 2-m temperature</td>
<td>K</td>
</tr>
<tr>
<td>TAUX</td>
<td>zonal surface stress</td>
<td>kg/m/s^2</td>
</tr>
<tr>
<td>TAUY</td>
<td>meridional surface stress</td>
<td>kg/m/s^2</td>
</tr>
<tr>
<td>TBOT</td>
<td>atmospheric air temperature</td>
<td>K</td>
</tr>
<tr>
<td>TBUILD</td>
<td>internal urban building temperature</td>
<td>K</td>
</tr>
<tr>
<td>TDA</td>
<td>daily average 2-m temperature</td>
<td>K</td>
</tr>
<tr>
<td>TDAYAVG</td>
<td>Daily Averaged Temperature</td>
<td>deg C</td>
</tr>
<tr>
<td>TEMP_AVG_T2M</td>
<td>temporary average 2m air temperature</td>
<td>K</td>
</tr>
<tr>
<td>TEMPMAX_RETRANSN</td>
<td>temporary annual max of retranslocated N pool</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>TEMPSUM_POTENTIAL_GPP</td>
<td>temporary annual sum of potential GPP</td>
<td>gC/m^2/yr</td>
</tr>
<tr>
<td>TG</td>
<td>ground temperature</td>
<td>K</td>
</tr>
<tr>
<td>TG_R</td>
<td>Rural ground temperature</td>
<td>K</td>
</tr>
<tr>
<td>TG_U</td>
<td>Urban ground temperature</td>
<td>K</td>
</tr>
<tr>
<td>THBOT</td>
<td>atmospheric air potential temperature</td>
<td>K</td>
</tr>
<tr>
<td>TLAI</td>
<td>total projected leaf area index</td>
<td>none</td>
</tr>
<tr>
<td>TLAKE</td>
<td>lake temperature</td>
<td>K</td>
</tr>
<tr>
<td>TOPT</td>
<td>topt coefficient for VOC calc</td>
<td>non</td>
</tr>
<tr>
<td>TOTCOLC</td>
<td>total column carbon, incl veg and cpool</td>
<td>gC/m^2</td>
</tr>
</tbody>
</table>
Chapter 1. How to customize the configuration for a case with CLM

<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTCOLN</td>
<td>total column-level N</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>TOTECOSYSC</td>
<td>total ecosystem carbon, incl veg but excl cpool</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>TOTECOSYSN</td>
<td>total ecosystem N</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>TOTFIRE</td>
<td>total ecosystem fire losses</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>TOTLITC</td>
<td>total litter carbon</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>TOTLITN</td>
<td>total litter N</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>TOTPFTC</td>
<td>total pft-level carbon, including cpool</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>TOTPFTN</td>
<td>total PFT-level nitrogen</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>TOTPRODC</td>
<td>total wood product C</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>TOTPRODN</td>
<td>total wood product N</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>TOTSOMC</td>
<td>total soil organic matter carbon</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>TOTSOMN</td>
<td>total soil organic matter N</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>TOTVEGC</td>
<td>total vegetation carbon, excluding cpool</td>
<td>gC/m^2</td>
</tr>
<tr>
<td>TOTVEGN</td>
<td>total vegetation nitrogen</td>
<td>gN/m^2</td>
</tr>
<tr>
<td>TOT_AID</td>
<td>total canopy absorbed indirect from direct</td>
<td>W/m^2</td>
</tr>
<tr>
<td>TPOOL_C</td>
<td>Total Carbon for pool</td>
<td>g/m2</td>
</tr>
<tr>
<td>TRAFFICFLUX</td>
<td>sensible heat flux from urban traffic</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>TRANSFER_DEADCROOT_GR</td>
<td>dead coarse root growth respiration from storage</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>TRANSFER_DEADSTEM_GR</td>
<td>dead stem growth respiration from storage</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>TRANSFER_FROOT_GR</td>
<td>fine root growth respiration from storage</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>TRANSFER_GR</td>
<td>growth resp for transfer growth displayed in this timestep</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>TRANSFER_LEAF_GR</td>
<td>leaf growth respiration from storage</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>TRANSFER_LIVECROOT_GR</td>
<td>live coarse root growth respiration from storage</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>TRANSFER_LIVESTEM_GR</td>
<td>live stem growth respiration from storage</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>TREFMNA</td>
<td>daily minimum of average 2-m temperature</td>
<td>K</td>
</tr>
<tr>
<td>TREFMNAV_R</td>
<td>Rural daily minimum of average 2-m temperature</td>
<td>K</td>
</tr>
<tr>
<td>Name</td>
<td>Long-name</td>
<td>Units</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>TREFMNAV_U</td>
<td>Urban daily minimum of average 2-m temperature</td>
<td>K</td>
</tr>
<tr>
<td>TREFMXAV</td>
<td>daily maximum of average 2-m temperature</td>
<td>K</td>
</tr>
<tr>
<td>TREFMXAV_R</td>
<td>Rural daily maximum of average 2-m temperature</td>
<td>K</td>
</tr>
<tr>
<td>TREFMXAV_U</td>
<td>Urban daily maximum of average 2-m temperature</td>
<td>K</td>
</tr>
<tr>
<td>TSA</td>
<td>2m air temperature</td>
<td>K</td>
</tr>
<tr>
<td>TSAI</td>
<td>total projected stem area index</td>
<td>none</td>
</tr>
<tr>
<td>TSA_R</td>
<td>Rural 2m air temperature</td>
<td>K</td>
</tr>
<tr>
<td>TSA_U</td>
<td>Urban 2m air temperature</td>
<td>K</td>
</tr>
<tr>
<td>TSOI</td>
<td>soil temperature</td>
<td>K</td>
</tr>
<tr>
<td>TSOI_10CM</td>
<td>soil temperature in top 10cm of soil</td>
<td>K</td>
</tr>
<tr>
<td>TV</td>
<td>vegetation temperature</td>
<td>K</td>
</tr>
<tr>
<td>TV24</td>
<td>vegetation temperature (last 24hrs)</td>
<td>K</td>
</tr>
<tr>
<td>TV240</td>
<td>vegetation temperature (last 240hrs)</td>
<td>K</td>
</tr>
<tr>
<td>Tair</td>
<td>atmospheric air temperature</td>
<td>K</td>
</tr>
<tr>
<td>U10</td>
<td>10-m wind</td>
<td>m/s</td>
</tr>
<tr>
<td>U10_DUST</td>
<td>10-m wind for dust model</td>
<td>m/s</td>
</tr>
<tr>
<td>ULRAD</td>
<td>upward longwave radiation above the canopy</td>
<td>W/m^2</td>
</tr>
<tr>
<td>URBAN_AC</td>
<td>urban air conditioning flux</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>URBAN_HEAT</td>
<td>urban heating flux</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>VA</td>
<td>atmospheric wind speed plus convective velocity</td>
<td>m/s</td>
</tr>
<tr>
<td>VCMXSHA</td>
<td>shaded leaf Vcmax</td>
<td>umolCO2/m^2/s</td>
</tr>
<tr>
<td>VCMXSUN</td>
<td>sunlit leaf Vcmax</td>
<td>umolCO2/m^2/s</td>
</tr>
<tr>
<td>VEGFIRE</td>
<td>pft-level fire loss</td>
<td>gC/m^2/s</td>
</tr>
<tr>
<td>VOCFLXT</td>
<td>total VOC flux into atmosphere</td>
<td>uGC/M2/H</td>
</tr>
<tr>
<td>VOLR</td>
<td>RTM storage: LIQ</td>
<td>m3</td>
</tr>
<tr>
<td>VOLR_ICE</td>
<td>RTM storage: ICE</td>
<td>m3</td>
</tr>
<tr>
<td>WA</td>
<td>water in the unconfined aquifer</td>
<td>mm</td>
</tr>
<tr>
<td>WASTEHEAT</td>
<td>sensible heat flux from heating/cooling sources of urban waste heat</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>WATDRY</td>
<td>watdry for entire column</td>
<td>mm3/mm3</td>
</tr>
<tr>
<td>Name</td>
<td>Long-name</td>
<td>Units</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>WATOPT</td>
<td>watopt for entire column</td>
<td>mm³/mm³</td>
</tr>
<tr>
<td>WF</td>
<td>soil water as frac. of whc for top 0.5 m</td>
<td>proportion</td>
</tr>
<tr>
<td>WIND</td>
<td>atmospheric wind velocity magnitude</td>
<td>m/s</td>
</tr>
<tr>
<td>WLIM</td>
<td>Water limitation used in bgmoist (atmp factor)</td>
<td></td>
</tr>
<tr>
<td>WOODC</td>
<td>wood C</td>
<td>gC/m²</td>
</tr>
<tr>
<td>WOODC</td>
<td>wood C</td>
<td>gC/m²</td>
</tr>
<tr>
<td>WOODC_ALLOC</td>
<td>wood C allocation</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>WOODC_ALLOC</td>
<td>wood C allocation</td>
<td>gC/m²</td>
</tr>
<tr>
<td>WOODC_LOSS</td>
<td>wood C loss</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>WOODC_LOSS</td>
<td>wood C loss</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>WOOD_HARVESTC</td>
<td>wood harvest (to product pools)</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>WOOD_HARVESTN</td>
<td>wood harvest (to product pools)</td>
<td>gN/m²/s</td>
</tr>
<tr>
<td>WT</td>
<td>total water storage (unsaturated soil water + groundwater)</td>
<td>mm</td>
</tr>
<tr>
<td>Wind</td>
<td>atmospheric wind velocity magnitude</td>
<td>m/s</td>
</tr>
<tr>
<td>XSCPOOL</td>
<td>total excess Carbon</td>
<td>g/m²</td>
</tr>
<tr>
<td>XSMRPOOL</td>
<td>temporary photosynthate C pool</td>
<td>gC/m²</td>
</tr>
<tr>
<td>XSMRPOOL_C13RATIO</td>
<td>C13/(C(12+13)) ratio for xsmrpool</td>
<td>proportion</td>
</tr>
<tr>
<td>XSMRPOOL_RECOVER</td>
<td>C flux assigned to recovery of negative xsmrpool</td>
<td>gC/m²/s</td>
</tr>
<tr>
<td>Z0HG</td>
<td>roughness length over ground, sensible heat</td>
<td>m</td>
</tr>
<tr>
<td>Z0HV</td>
<td>roughness length over vegetation, sensible heat</td>
<td>m</td>
</tr>
<tr>
<td>Z0M</td>
<td>momentum roughness length</td>
<td>m</td>
</tr>
<tr>
<td>Z0MG</td>
<td>roughness length over ground, momentum</td>
<td>m</td>
</tr>
<tr>
<td>Z0MV</td>
<td>roughness length over vegetation, momentum</td>
<td>m</td>
</tr>
<tr>
<td>Z0QG</td>
<td>roughness length over ground, latent heat</td>
<td>m</td>
</tr>
<tr>
<td>Z0QV</td>
<td>roughness length over vegetation, latent heat</td>
<td>m</td>
</tr>
<tr>
<td>ZBOT</td>
<td>atmospheric reference height</td>
<td>m</td>
</tr>
<tr>
<td>ZII</td>
<td>convective boundary height</td>
<td>m</td>
</tr>
<tr>
<td>ZWT</td>
<td>water table depth</td>
<td>m</td>
</tr>
</tbody>
</table>
Examples of using different namelist features

Below we will give examples of user namelists that activate different commonly used namelist features. We will discuss the namelist features in different examples and then show a user namelist that includes an example of the use of these features. First we will show the default namelist that doesn’t activate any user options.

The default namelist

Here we give the default namelist as it would be created for a I1850CN compset at 0.9x1.25 resolution with a gx1v6 land-mask. To edit the namelist you would edit the `BuildConf/clm.buildnml.csh` under your case (or before `configure` include a user namelist with just the items you want to change). For simplicity we will just show the namelist and NOT the entire file. In the sections below, for simplicity we will just show the user namelist (`user_nl_clm`) that will add (or modify existing) namelist items to the namelist. Again, just adding the `user_nl_clm` file to your case directory, before "configure -case" is invoked will cause the given namelist items to appear in your CLM namelist.

Example 1-2. Default CLM Namelist

```plaintext
&clm_inparm
  co2_ppmv = 284.7
  co2_type = 'constant'
  create_crop_landunit = .false.
  dtime = 1800
  fatmgrid = '$DIN_LOC_ROOT/lnd/clm2/griddata/griddata_0.9x1.25_070212.nc'
  fatmndfrc = '
  $DIN_LOC_ROOT/lnd/clm2/griddata/fracdata_0.9x1.25_gx1v6_c090317.nc'
  finidat = 'I1850CN_f09_g16_c100503.clm2.r.0001-01-01-00000.nc'
  fpftcon = '$DIN_LOC_ROOT/lnd/clm2/pftdata/pft-physiology.c110425.nc'
  frivinp_rtm = '$DIN_LOC_ROOT/lnd/clm2/rtmdata/rdirc_0.5x0.5_sinyr2000_c101124.nc'
  fsnowaging = '
  $DIN_LOC_ROOT/lnd/clm2/snicardata/snicar_drdt_bst_fit_60_c070416.nc'
  fsnowoptics = '
  $DIN_LOC_ROOT/lnd/clm2/snicardata/snicar_optics_5bnd_c090915.nc'
  fsurdat = '
  $DIN_LOC_ROOT/lnd/clm2/surfdata/surfdata_0.9x1.25_sinyr1850_c091006.nc'
  ice_runoff = .true.
  outnc_large_files = .true.
  rtm_natops = 6
  urban_hac = 'ON_WASTEHEAT'
  urban_traffic = .false.
  /
&ndepdyn_nml
  stream_fldfilename_ndep = '
  $DIN_LOC_ROOT/lnd/clm2/ndepdata/fndep_clm_hist_simyr1849-2006_1.9x2.5_c100428.nc'
  stream_year_first_ndep = 1850
  stream_year_last_ndep = 1850
  /
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Long-name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaais_area</td>
<td>Antarctic ice area</td>
<td>km^2</td>
</tr>
<tr>
<td>aaais_mask</td>
<td>Antarctic mask</td>
<td>unitless</td>
</tr>
<tr>
<td>gris_area</td>
<td>Greenland ice area</td>
<td>km^2</td>
</tr>
<tr>
<td>gris_mask</td>
<td>Greenland mask</td>
<td>unitless</td>
</tr>
</tbody>
</table>
Chapter 1. How to customize the configuration for a case with CLM

Note that the namelist introduces some of the history namelist options that will be talked about in further detail below (hist_mfilt and hist_nhtfrc).

Adding/removing fields on your primary history file

The primary history files are output monthly, and contain an extensive list of fieldnames, but the list of fieldnames can be added to using hist_fincl1 or removed from by adding fieldnames to hist_fexcl1. A sample user namelist user_nl_clm adding few new fields (cosine of solar zenith angle, and solar declination) and excluding a few standard fields is (ground temperature, vegetation temperature, soil temperature and soil water):.

Example 1-3. Example user_nl_clm namelist adding and removing fields on primary history file

```
&clm_inparm
  hist_fincl1 = 'COSZEN', 'DECL'
  hist_fexcl1 = 'TG', 'TV', 'TSOI', 'H2OSOI'
/
```

Adding auxiliary history files and changing output frequency

The hist_fincl2 through hist_fincl6 set of namelist variables add given history fieldnames to auxiliary history file "streams", and hist_fexcl2 through hist_fexcl6 set of namelist variables remove given history fieldnames from history file auxiliary "streams". A history "stream" is a set of history files that are produced at a given frequency. By default there is only one stream of monthly data files. To add more streams you add history fieldnames to hist_fincl2 through hist_fincl6. The output frequency and the way averaging is done can be different for each history file stream. By default the primary history files are monthly and any others are daily. You can have up to six active history streams, but you need to activate them in order. So if you activate stream "6" by setting hist_fincl6, but if any of hist_fincl2 through hist_fincl5 are unset, only the history streams up to the first blank one will be activated.

The frequency of the history file streams is given by the namelist variable hist_nhtfrc which is an array of rank six for each history stream. The values of the array hist_nhtfrc must be integers, where the following values have the given meaning:

- **Positive value** means the output frequency is the number of model steps between output.
- **Negative value** means the output frequency is the absolute value in hours given (i.e. -1 would mean an hour and -24 would mean a full day).
- **Zero** means the output frequency is monthly. This is the default for the primary history files.

The number of samples on each history file stream is given by the namelist variable hist_mfilt which is an array of rank six for each history stream. The values of the array hist_mfilt must be positive integers. By default the primary history file stream has one time sample on it (i.e. output is to separate monthly files), and all other streams have thirty time samples on them.

A sample user namelist user_nl_clm turning on four extra file streams for output: daily, six-hourly, hourly, and every time-step, leaving the primary history files as monthly, and changing the number of samples on the streams to: yearly (12), thirty, weekly (28), daily (24), and daily (48) is:
Example 1-4. Example `user_nl_clm` namelist adding auxiliary history files and changing output frequency

```
&clm_inparm
  hist_fincl2 = 'TG', 'TV'
  hist_fincl3 = 'TG', 'TV'
  hist_fincl4 = 'TG', 'TV'
  hist_fincl5 = 'TG', 'TV'
  hist_nhtfrq = 0, -24, -6, -1, 1
  hist_mfilt = 12, 30, 28, 24, 48
/
```

Removing all history fields

Sometimes for various reasons you want to remove all the history fields either because you want to do testing without any output, or you only want a very small custom list of output fields rather than the default extensive list of fields. By default only the primary history files are active, so technically using `hist_fexcl1` explained in the first example, you could list ALL of the history fields that are output in `hist_fexcl1` and then you wouldn’t get any output. However, as the list is very extensive this would be a cumbersome thing to do. So to facilitate this `hist_empty_htapes` allows you to turn off all default output. You can still use `hist_fincl` to turn your own list of fields on, but you then start from a clean slate. A sample user namelist `user_nl_clm` turning off all history fields and then activating just a few selected fields (ground and vegetation temperatures and absorbed solar radiation) is:

Example 1-5. Example `user_nl_clm` namelist removing all history fields

```
&clm_inparm
  hist_empty_htapes = .true.
  hist_fincl1 = 'TG', 'TV', 'FSA'
/
```

Note, you could also build adding the "-noio" option to CLM_CONFIG_OPTS. But, this would build the model without history output and you wouldn’t be able to add that in later.

Various ways to change history output averaging flags

There are two ways to change the averaging of output history fields. The first is using `hist_avgflag_pertape` which gives a default value for each history stream, the second is when you add fields using `hist_fincl*`, you add an averaging flag to the end of the field name after a colon (for example 'TSOI:X', would output the maximum of TSOI). The types of averaging that can be done are:

- **A** Average, over the output interval.
- **I** Instantaneous, output the value at the output interval.
- **X** Maximum, over the output interval.
- **M** Minimum, over the output interval.

The default averaging depends on the specific fields, but for most fields is an average. A sample user namelist `user_nl_clm` making the monthly output fields all averages (except TSOI for the first two streams and FIRE for the 5th stream), and adding auxiliary file streams for instantaneous (6-hourly),
Chapter 1. How to customize the configuration for a case with CLM

maximum (daily), minimum (daily), and average (daily). For some of the fields we diverge from the
per-tape value given and customize to some different type of optimization.

Example 1-6. Example user_nl_clm namelist with various ways to average history fields

```plaintext
&clm_inparm
hist_empty_htapes = .true.,
    hist_fincl1 = 'TSOI:X', 'TG', 'TV', 'FIRE', 'FSR', 'FSH',
        'EFLX_LH_TOT', 'WT',
    hist_fincl2 = 'TSOI:X', 'TG', 'TV', 'FIRE', 'FSR', 'FSH',
        'EFLX_LH_TOT', 'WT',
    hist_fincl3 = 'TSOI', 'TG:I', 'TV', 'FIRE', 'FSR', 'FSH',
        'EFLX_LH_TOT', 'WT',
    hist_fincl4 = 'TSOI', 'TG', 'TV:I', 'FIRE', 'FSR', 'FSH',
        'EFLX_LH_TOT', 'WT',
    hist_fincl5 = 'TSOI', 'TG', 'TV', 'FIRE:I', 'FSR', 'FSH',
        'EFLX_LH_TOT', 'WT',
hist_avgflag_pertape = 'A', 'I', 'X', 'M', 'A',
hist_nhtfrq = 0, -6, -24, -24, -24
```

In the example we put the same list of fields on each of the tapes: soil-temperature, ground temperature,
vegetation temperature, emitted longwave radiation, reflected solar radiation, sensible heat, total
latent-heat, and total water storage. We also modify the soil-temperature for the primary and secondary
auxiliary tapes by outputting them for a maximum instead of the prescribed per-tape of average and
instantaneous respectively. For the tertiary auxiliary tape we output ground temperature instantaneous
instead of as a maximum, and for the fourth auxiliary tape we output vegetation temperature
instantaneous instead of as a minimum. Finally, for the fifth auxiliary tapes we output FIRE
instantaneously instead of as an average.

Note: We also use hist_empty_htapes as in the previous example, so we can list ONLY the fields
that we want on the primary history tapes.

Outputting history files as a vector in order to analyze the plant function
types within gridcells

By default the output to history files are the grid-cell average of all land-units, and vegetation types
within that grid-cell, and output is on the full 2D latitude/longitude grid with ocean masked out.
Sometimes it’s important to understand how different land-units or vegetation types are acting within a
grid-cell. The way to do this is to output history files as a 1D-vector of all land-units and vegetation
types. In order to display this, you’ll need to do extensive post-processing to make sense of the output.
Often you may only be interested in a few points, so once you figure out the 1D indices for the grid-cells
of interest, you can easily view that data. 1D vector output can also be useful for single point datasets,
since it’s then obvious that all data is for the same grid cell.

To do this you use hist_dov2xy which is an array of rank six for each history stream. Set it to
.false. if you want one of the history streams to be a 1D vector. You can also use
hist_type1d_pertape if you want to average over all the: Plant-Function-Types, columns, land-units,
or grid-cells. A sample user namelist user_nl_clm leaving the primary monthly files as 2D, and then
doing grid-cell (GRID), column (COLS), and no averaging over auxiliary tapes output daily for a single field (ground temperature) is:

Example 1-7. Example user_nl_clm namelist outputting some files in 1D Vector format

```
&clm_inparm

hist_finc12 = 'TG'
hist_finc13 = 'TG'
hist_finc14 = 'TG'
hist_finc15 = 'TG'
hist_finc16 = 'TG'
hist_dov2xy = .true., .false., .false., .false.
hist_type2d_pertape = ' ', 'GRID', 'COLS', '
hist_nhtfrq = 0, -24, -24, -24
```

Warning

LAND and COLS are also options to the pertape averaging, but currently there is a bug with them and they fail to work.

Note: Technically the default for `hist_nhtfrq` is for primary files output monthly and the other auxiliary tapes for daily, so we don’t actually have to include `hist_nhtfrq`, we could use the default for it. Here we specify it for clarity.

Caution

Visualizing global 1D vector files will take effort. You’ll probably want to do some post-processing and possibly just extract out single points of interest to see what is going on. Since, the output is a 1D vector, of only land-points traditional plots won’t be helpful. The number of points per grid-cell will also vary for anything, but grid-cell averaging. You’ll need to use the output fields `pftslid_ixy`, and `pftslid_jxy`, to get the mapping of the fields to the global 2D array. `pftslid_itype_veg` gives you the PFT number for each PFT. Most likely you’ll want to do this analysis in a data processing tool (such as NCL, Matlab, Mathematica, IDL, etcetera that is able to read and process NetCDF data files).

Conclusion to namelist examples

We’ve given various examples of namelists that feature the use of different namelist options to customize a case for particular uses. Most the examples revolve around how to customize the output history fields. This should give you a good basis for setting up your own CLM namelist.
Customizing the DATM Namelist and Streams files

When running "I" compsets with CLM you use the DATM model to give atmospheric forcing data to CLM. There are four ways to customize DATM:

1. **DATM Main Namelist** (*datm_in*)
2. **DATM Stream Namelist** (*datm_atm_in*)
3. **DATM stream files**
4. **DATM template file** (*Tools/Templates.datm.cpl7.template*)

The Data Model Documentation (http://www.cesm.ucar.edu/models/cesm1.0/data8/data8_doc/book1.html) gives the details of all the options for the data models and for DATM specifically. It goes into detail on all namelist items both for DATM and for DATM streams. It shows examples of stream files and talks about their use. In Appendix A we talk about editing the CLM and DATM template files. So here we won’t talk about the DATM template file, and we won’t list ALL of the DATM namelist options, nor go into great details about stream files. But, we will talk about a few of the different options that are relevant for running with CLM. All of the options for changing the namelists or stream files is done by editing the `Buildconf/datm.buildnml.csh` file.

Because, they aren’t useful for work with CLM we will NOT discuss any of the options for the main DATM namelist. Use the DATM Users Guide at the link above to find details of that. For the streams namelist we will discuss three items:

1. **mapalgo**
2. **taxmode**
3. **tintalgo**

And for the streams file itself we will discuss:

- **offset**

Again everything else (and including the above items) are discussed in the Data Model User’s Guide. Of the above the last three: offset, taxmode and tintalgo are all closely related and have to do with the time interpolation of the DATM data.

mapalgo

`mapalgo` sets the spatial interpolation method to go from the DATM input data to the output DATM model grid. The default is `bilinear`. For CLM1PT we set it to `nn` to just select the nearest neighbor. This saves time and we also had problems running the interpolation for single-point mode.

taxmode

`taxmode` is the time axis mode. For CLM we usually have it set to `cycle` which means that once the end of the data is reached it will start over at the beginning. The `extend` modes is used have it use the last time-step of the forcing data once it reaches the end of forcing data (or use the first time-step before it reaches where the forcing data starts). See the warning below about the `extend`
Chapter 1. How to customize the configuration for a case with CLM mode.

Warning

THE extend OPTION NEEDS TO BE USED WITH CAUTION! It is only invoked by default for the CLM1PT mode and is only intended for the supported urban datasets to extend the data for a single time-step. If you have the model run extensively through periods in this mode you will effectively be repeating that last time-step over that entire period. This means the output of your simulation will be worthless.

offset (in the stream file)

`offset` is the time offset in seconds to give to each stream of data. Normally it is NOT used because the time-stamps for data is set correctly for each stream of data. Note, the `offset` may NEED to be adjusted depending on the `taxmode` described above, or it may need to be adjusted to account for data that is time-stamped at the END of an interval rather than the middle or beginning of interval. The `offset` can is set in the stream file rather than on the stream namelist. For data with a `taxmode` method of `coszen` the time-stamp needs to be for the beginning of the interval, while for other data it should be the midpoint. The `offset` can be used to adjust the time-stamps to get the data to line up correctly.

`tintalgo`

`tintalgo` is the time interpolation algorithm. For CLM we usually use one of three modes: `coszen`, `nearest`, or `linear`. We use `coszen` for solar data, `nearest` for precipitation data, and `linear` for everything else. If your data is half-hourly or hourly, `nearest` will work fine for everything. The `coszen` scaling is useful for longer periods (three hours or more) to try to get the solar to match the cosine of the solar zenith angle over that longer period of time. If you use `linear` for longer intervals, the solar will cut out at night-time anyway, and the straight line will be a poor approximation of the cosine of the solar zenith angle of actual solar data. `nearest` likewise would be bad for longer periods where it would be much higher than the actual values.

Note: For `coszen` the time-stamps of the data should correspond to the beginning of the interval the data is measured for. Either make sure the time-stamps on the datafiles is set this way, or use the `offset` described above to set it.

Note: For `nearest` and `linear` the time-stamps of the data should correspond to the middle of the interval the data is measured for. Either make sure the time-stamps on the datafiles is set this way, or use the `offset` described above to set it.

In the sections below we go over each of the relevant DATM_MODE options and what the above DATM settings are for each. This gives you examples of actual usage for the settings. We also describe in what ways you might want to customize them for your own case.
Chapter 1. How to customize the configuration for a case with CLM

CLM_QIAN mode and it’s DATM settings

In CLM_QIAN mode the Qian dataset is used which has 6-hourly solar and precipitation data, and 3-hourly for everything else. The dataset is divided into those three data streams: solar, precipitation, and everything else (temperature, pressure, humidity and wind). The time-stamps of the data were also adjusted so that they are the beginning of the interval for solar, and the middle for the other two. Because, of this the \texttt{offset} is set to zero, and the \texttt{tintalgo} is: \texttt{coszen}, \texttt{nearest}, and \texttt{linear} for the solar, precipitation and other data respectively. \texttt{taxmode} is set to \texttt{cycle} and \texttt{mapalgo} is set to \texttt{bilinear} so that the data is spatially interpolated from the input T62 grid to the grid the atmosphere model is being run at.

Normally you wouldn’t customize the CLM_QIAN settings, but you might replicate it’s use for your own global data that had similar temporal characteristics.

CLM1PT mode and it’s DATM settings

In CLM1PT mode the model is assumed to have half-hourly or hourly data for a single-point. For the supported datasets that is exactly what it has. But, if you add your own data you may need to make adjustments accordingly. Using the \texttt{CLM_USRDAT_NAME} option you can easily extend this mode for your own datasets that may be regional or even global and could be at different temporal frequencies. If you do so you’ll need to make adjustments to your DATM settings. The dataset has all data in a single stream file. The time-stamps of the data were also adjusted so that they are at the middle of the interval. Because, of this the \texttt{offset} is set to zero, and the \texttt{tintalgo} is \texttt{nearest}. \texttt{taxmode} is set to \texttt{extend} and \texttt{mapalgo} is set to \texttt{nn} so that simply the nearest point is used.

If you are using your own data for this mode and it’s not at least hourly you’ll want to adjust the DATM settings for it. If the data is three or six hourly, you’ll need to divide it up into separate streams like in CLM_QIAN mode which will require fairly extensive changes to the DATM namelist and streams files. For an example of doing this see Example 5-7.

CPLHIST3HrWx mode and it’s DATM settings

In CPLHIST3HrWx mode the model is assumed to have 3-hourly for a global grid from a previous CESM simulation. Like CLM_QIAN mode the data is divided into three streams: one for precipitation, one for solar, and one for everything else. The time-stamps for Coupler history files for CESM is at the end of the interval, so the offset needs to be set in order to adjust the time-stamps to what it needs to be for the \texttt{tintalgo} settings. For precipitation \texttt{taxmode} is set to \texttt{nearest} so the \texttt{offset} is set to \texttt{-5400} seconds so that the ending time-step is adjusted by an hour and half to the middle of the interval. For solar \texttt{taxmode} is set to \texttt{coszen} so the \texttt{offset} is set to \texttt{-10800} seconds so that the ending time-step is adjust by three hours to the beginning of the interval. For everything else \texttt{taxmode} is set to \texttt{linear} so the \texttt{offset} is set to \texttt{-5400} seconds so that the ending time-step is adjusted by an hour and half to the middle of the interval.

Normally you wouldn’t modify the DATM settings for this mode. However, if you had data at a different frequency than 3-hours you would need to modify the \texttt{offset} and possibly the \texttt{taxmode}. The other two things that you might modify would be the path to the data (which you can change in the DATM template see Appendix A) or the domain file for the resolution (which is currently hardwired to f09). For data at a
different input resolution you would need to change the domain file in the streams file to use a domain file to the resolution that the data comes in on.

Conclusion to customizing chapter

We’ve given extensive details on customizing cases with CLM, by choosing compsets, by changing configure options and interacting with the CLM "configure" and "build-namelist" scripts, we’ve given details on all of the CLM namelist items, and finally given some instruction in customizing the DATM namelist and streams files. In the next chapter we talk about further ways to customize cases with CLM by creating your own datasets using the tools provided in CLM.
Chapter 2. Using the CLM tools to create your own input datasets

There are several tools provided with CLM that allow you to create your own input datasets at resolutions you choose, or to interpolate initial conditions to a different resolution, or used to compare CLM history files between different cases. The tools are all available in the `models/1nd/clm/tools` directory. Most of the tools are FORTRAN stand-alone programs in their own directory, but there is also a suite of NCL scripts in the `ncl_scripts` directory. Some of the NCL scripts are very specialized and not meant for general use, and we won’t document them here. They still contain documentation in the script itself and the README file in the tools directory. But, the list of generally important scripts and programs are:

1. `cprnc` to compare NetCDF files with a time axis.
2. `interpinic` to interpolate initial condition files.
3. `mkgriddata` to create grid datasets.
4. `mkdatadomain` to create domain files from grid datasets used by DATM or docn.
5. `mksurfdelta` to create surface datasets from grid datasets.
6. `ncl_scripts/getregional_datasets.pl` script to extract a region or a single-point from global input datasets. See the single-point chapter for more information on this.
7. `ncl_scripts/hpdepregrid.ncl` interpolate the Nitrogen deposition datasets to a new resolution.
8. `ncl_scripts/aerdepregrid.ncl` interpolate the Aerosol deposition datasets to a new resolution.

In the sections to come we will go into detailed description of how to use each of these tools in turn. First, however we will discuss the common environment variables and options that are used by all of the FORTRAN tools. Second, we go over the outline of the entire file creation process for all input files needed by CLM for a new resolution, then we turn to each tool. In the last section we will discuss how to customize files for particular observational sites.

Common environment variables and options used in building the FORTRAN tools

The FORTRAN tools all have similar makefiles, and similar options for building. All of the Makefiles use GNU Make extensions and thus require that you use GNU make to use them. They also auto detect the type of platform you are on, using "uname -s" and set the compiler, compiler flags and such accordingly. There are also environment variables that can be set to set things that must be customized. All the tools use NetCDF and hence require the path to the NetCDF libraries and include files. On some platforms (such as Linux) multiple compilers can be used, and hence there are env variables that can be set to change the FORTRAN and/or "C" compilers used. The tools other than `cprnc` also allow finer control, by also allowing the user to add compiler flags they choose, for both FORTRAN and "C", as well as picking the compiler, linker and and add linker options. Finally the tools other than `cprnc` allow
you to turn optimization on (which is off by default but on for the **mksurfdata** and **interpinic** programs) with the **OPT** flag so that the tool will run faster. To get even faster performance, the **interpinic**, **mksurfdata**, and **mkgriddata** programs allow you to also use the **SMP** to turn on multiple shared memory processors. When **SMP=TRUE** you set the number of threads used by the program with the **OMP_NUM_THREADS** environment variable.

Options used by all: **cprnc**, **interpinic**, **mkdatadomain**, **mkgriddata**, and **mksurfdata**

- **LIB_NETCDF** -- sets the location of the NetCDF library.
- **INC_NETCDF** -- sets the location of the NetCDF include files.
- **USER_FC** -- sets the name of the FORTRAN compiler.

Options used by: **interpinic**, **mkdatadomain**, **mkgriddata**, and **mksurfdata**

- **MOD_NETCDF** -- sets the location of the NetCDF FORTRAN module.
- **USER_LINKER** -- sets the name of the linker to use.
- **USER_CPPDEFS** -- adds any CPP defines to use.
- **USER_CFLAGS** -- adds any "C" compiler flags to use.
- **USER_FFLAGS** -- adds any FORTRAN compiler flags to use.
- **USER_LDFLAGS** -- adds any linker flags to use.
- **USER_CC** -- sets the name of the "C" compiler to use.
- **OPT** -- set to **TRUE** to compile the code optimized (**TRUE** or **FALSE**)

Options used by: **interpinic**, **mkgriddata**, and **mksurfdata**:

- **SMP** -- set to **TRUE** to turn on shared memory parallelism (i.e. OpenMP) (**TRUE** or **FALSE**)
- **Filepath** -- list of directories to build source code from.
- **Srcfiles** -- list of source code filenames to build executable from.

Options used only by **cprnc**:

- **EXEDIR** -- sets the location where the executable will be built.
- **VPATH** -- colon delimited path list to find the source files.

More details on each environment variable.

LIB_NETCDF

This variable sets the path to the NetCDF library file (**libnetcdf.a**). If not set it defaults to /usr/local/lib. In order to use the tools you need to build the NetCDF library and be able to link to it. In order to build the model with a particular compiler you may have to compile the NetCDF library with the same compiler (or at least a compatible one).

INC_NETCDF

This variable sets the path to the NetCDF include directory (in order to find the include file netcdf.inc). If not set it defaults to /usr/local/include.

MOD_NETCDF

This variable sets the path to the NetCDF module directory (in order to find the NetCDF FORTRAN-90 module file when NetCDF is used with a FORTRAN-90 **use statement**. When not set it defaults to the **LIB_NETCDF** value.

USER_FC

This variable sets the command name to the FORTRAN-90 compiler to use when compiling the tool. The default compiler to use depends on the platform. And for example, on the AIX platform this variable is **NOT** used.
Chapter 2. Using the CLM tools to create your own input datasets

USER_LINKER
This variable sets the command name to the linker to use when linking the object files from the compiler together to build the executable. By default this is set to the value of the FORTRAN-90 compiler used to compile the source code.

USER_CPPDEFS
This variable adds additional optional values to define for the C preprocessor. Normally, there is no reason to do this as there are very few CPP tokens in the CLM tools. However, if you modify the tools there may be a reason to define new CPP tokens.

USER_CC
This variable sets the command name to the "C" compiler to use when compiling the tool. The default compiler to use depends on the platform. And for example, on the AIX platform this variable is NOT used

USER_CFLAGS
This variable adds additional compiler options for the "C" compiler to use when compiling the tool. By default the compiler options are picked according to the platform and compiler that will be used.

USER_FFLAGS
This variable adds additional compiler options for the FORTRAN-90 compiler to use when compiling the tool. By default the compiler options are picked according to the platform and compiler that will be used.

USER_LDFLAGS
This variable adds additional options to the linker that will be used when linking the object files into the executable. By default the linker options are picked according to the platform and compiler that is used.

SMP
This variable flags if shared memory parallelism (using iOpenMP) should be used when compiling the tool. It can be set to either TRUE or FALSE, by default it is set to FALSE, so shared memory parallelism is NOT used. When set to TRUE you can set the number of threads by using the OMP_NUM_THREADS environment variable. Normally, the most you would set this to would be to the number of on-node CPU processors. Turning this on should make the tool run much faster.

Caution
Note, that depending on the compiler answers may be different when SMP is activated.

OPT
This variable flags if compiler optimization should be used when compiling the tool. It can be set to either TRUE or FALSE, by default it is set to FALSE for mkdatadomain and TRUE for mksurfdata and interpinic. Turning this on should make the tool run much faster.
Chapter 2. Using the CLM tools to create your own input datasets

Caution

Note, you should expect that answers will be different when OPT is activated.

Filepath

All of the tools are stand-alone and don’t need any outside code to operate. The Filepath is the list of directories needed to compile and hence is always simply "." the current directory. Several tools use copies of code outside their directory that is in the CESM distribution (either csm_share code or CLM source code).

Srcfiles

The Srcfiles lists the filenames of the source code to use when building the tool.

EXEDIR

The cprnc tool uses this variable to set the location of where the executable will be built. The default is the current directory.

VPATH

The cprnc tool uses this variable to set the colon delimited pathnames of where the source code exists. The default is the current directory.

Note: There are several files that are copies of the original files from either models/lnd/clm/src/main, models/csm_share/shr, or copies from other tool directories. By having copies the tools can all be made stand-alone, but any changes to the originals will have to be put into the tool directories as well.

The README.filecopies (which can be found in models/lnd/clm/tools) is repeated here.

models/lnd/clm/tools/README.filecopies May/26/2011

There are several files that are copies of the original files from either models/lnd/clm/src/main, models/csm_share/shr, or copies from other tool directories. By having copies the tools can all be made stand-alone, but any changes to the originals will have to be put into the tool directories as well.

1. Files that are IDENTICAL:

 1. csm_share files copied that should be identical to models/csm_share/shr:

 shr_kind_mod.F90
 shr_const_mod.F90
 shr_log_mod.F90
 shr_timer_mod.F90
 shr_string_mod.F90
 shr_file_mod.F90

 2. clm/src files copied that should be identical to models/lnd/clm/src/main:

 clm_varct1.F90
 nanMod.F90

72
Chapter 2. Using the CLM tools to create your own input datasets

3. Files shared between mkgridata and mksurfdata that are identical:
 (these all came from a much older version of clm)
 - nodioMod.F90
 - areaMod.F90
 - mkvarpar.F90

II. Files with differences

1. csm_share files copied with differences:
 - shr_sys_mod.F90 - Remove mpi abort and reference to shr_mpi_mod.F90.

2. clm/src files with differences:
 - fileutils.F90 --- Remove use of masterproc and spmdMod and endrun in abortutils.

3. Files shared between mkgridata and mksurfdata different from models/lnd/clm/src:
 - domainMod.F90 ---- Highly customized based off an earlier version of clm code.
 Remove use of abortutils, spmdMod. clm version uses latlon
 this version uses domain in names. Distributed memory
 parallelism is removed.

General information on running the FORTRAN tools

The tools run either one of two ways, with a namelist to provide options, or with command line arguments (and NOT both). interpinic and cprnc run with command line arguments, and the other tools run with namelists.

Running FORTRAN tools with namelists

mkgridata, mksurfdata and mkdatadomain run with namelists that are read from standard input. Hence, you create a namelist and then run them by redirecting the namelist file into standard input as follows:

 ./program < namelist

For programs with namelists there is at least one sample namelist with the name "program".namelist (i.e. mksurfdata.namelist for the mksurfdata program). There may also be other sample namelists that end in a different name besides "namelist". Namelists that you create should be similar to the example namelist. The namelist values are also documented along with the other namelists in the:

 models/lnd/clm/bld/namelist_files/namelist_definition.xml
 models/lnd/clm/bld/namelist_files/namelist_defaults_clm_tools.xml

Running FORTRAN tools with command line options

interpinic and cprnc run with command line arguments. The detailed sections below will give you more information on the command line arguments specific to each tool. Also running the tool without any
arguments will give you a general synopsis on how to run the tool. For example to get help on running interpinic do the following.

 cd models/lnd/clm/tools/interpinic
 gmake
 ./interpinic

Running FORTRAN tools built with SMP=TRUE

When you enable SMP=TRUE on your build of one of the tools that make use of it, you are using OpenMP for shared memory parallelism (SMP). In SMP loops are run in parallel with different threads run on different processors all of which access the same memory (called on-node). Thus you can only usefully run up to the number of processors that are available on a single-node of the machine you are running on. For example, on the NCAR machine bluefire there are 32 processors per node, but the SMT hardware on the machine allows you to submit twice as many threads or 64 threads. So to run the mksurfd data on bluefire optimized, with 64 threads you would do the following:

 cd models/lnd/clm/tools/mksurfd
 gmake OPT=TRUE SMP=TRUE
 setenv OMP_NUM_THREADS 64
 ./mksurfd < mksurfd.data

The File Creation Process

When just creating a replacement file for an existing one, the relevant tool should be used directly to create the file. When you are creating a set of files for a new resolution there are some dependencies between the tools that you need to keep in mind when creating them. The main dependency is that the mkgriddata MUST be done first as the grid dataset is then input into the other tools. Also look at Table 3-1.

Creating a complete set of files for input to CLM

1. Create grid and fraction datasets

 First use mkgriddata to create grid and fraction datasets. See the Section called Using mkgriddata to create grid datasets for more information on this.

2. Create domain dataset (if NOT already done)

 Next use mkdatadomain to create a domain file for use by DATM from the grid and fraction datasets just created. This is required, unless a domain file already created was input into mkgriddata on the previous step. See the Section called Using mkdatadomain to create domain datasets for DATM or docn from CLM grid datasets for more information on this.
3. Create surface datasets

Next use **mksurfdata** to create a surface dataset, using the grid dataset as input. See the Section called *Using mksurfdata to create surface datasets from grid datasets* for more information on this.

4. Interpolate aerosol deposition datasets (optional)

By default the atmosphere model will interpolate these datasets on the fly, so you don’t normally need to do this step. A reason you might want to do this is to make the read and interpolation faster, by reducing the amount of data read in and removing the need for the interpolation. So, if you do, you can use **aerdepregrid.ncl** to regrid aerosol deposition datasets to your new resolution using the grid dataset as input. See the Section called *Using aerdepregrid.ncl to interpolate Aerosol deposition datasets* for more information on this.

5. Interpolate Nitrogen deposition datasets (optional, but only needed if running CLMCN)

By default Nitrogen deposition is read in from stream files at 2-degree resolution and interpolated to the resolution you are running at, so you don’t need to do this step. As with aerosol deposition datasets a reason you might want to do this is to make the read and interpolation faster, by reducing the amount of data read in and removing the need for the interpolation. So, if you do you can use **ndepregrid.ncl** to regrid Nitrogen deposition datasets to your new resolution using the grid dataset as input. See the Section called *Using ndepregrid.ncl to interpolate Nitrogen deposition datasets* for more information on this.

6. Create a sort of initial condition dataset

You then need to do one of the following three options to have an initial dataset to start from.

 a. Use spinup-procedures to create initial condition datasets

 The first option is to do the spinup procedures from arbitrary initial conditions to get good initial datasets. This is the most robust method to use. See the Section called *Spinning up the Satellite Phenology Model (CLMSP spinup)* in Chapter 4, the Section called *Spinning up the biogeochemistry Carbon-Nitrogen Model (CN spinup)* in Chapter 4, or the Section called *Spinning up the Carbon-Nitrogen Dynamic Global Vegetation Model (CNDV spinup)* in Chapter 4 for more information on this.

 b. Use **interpinic** to interpolate existing initial condition datasets

 The next option is to interpolate from spunup datasets at a different resolution, using **interpinic**. See the Section called *Using interpinic to interpolate initial conditions to different resolutions* for more information on this.

 c. Start up from arbitrary initial conditions

 The last alternative is to run from arbitrary initial conditions without using any spun-up datasets. This is inappropriate when using CLMCN (bgc=cn or cndv) as it takes a long time to spinup Carbon pools.

 Warning

 This is NOT recommended as many fields in CLM take a long time to equilibrate.

7. Enter the new datasets into the **build-namelist XML database**
The last optional thing to do is to enter the new datasets into the **build-namelist** XML database. See Chapter 3 for more information on doing this. This is optional because the user may enter these files into their namelists manually. The advantage of entering them into the database is so that they automatically come up when you create new cases.

Using the cprnc tool to compare two history files

cprnc is a tool shared by both CAM and CLM to compare two NetCDF history files. It differences every field that has a time-axis that is also shared on both files, and reports a summary of the difference. The summary includes the three largest differences, as well as the root mean square (RMS) difference. It also gives some summary information on the field as well. You have to enter at least one file, and up to two files. With one file it gives you summary information on the file, and with two it gives you information on the differences between the two. At the end it will give you a summary of the fields compared and how many fields were different and how many were identical.

Options:

- `-m` = do NOT align time-stamps before comparing
- `-v` = verbose output
- `-ipr`
- `-jpr`
- `-kpr`

See the cprnc README (../../tools/cprnc/README) file for more details which is repeated here:

```plaintext
----

cprnc is a generic tool for analyzing a netcdf file or comparing two netcdf files.

Quick Start Guide:
------------------

> setenv INC_NETCDF $local_netcdf_include_path
> setenv LIB_NETCDF $local_netcdf_lib_path
> gmake
> ./cprnc file1 # for analyze mode
> ./cprnc file1 file2 # for compare mode

Usage: cprnc [-v] [-d dimname:start[=count]] file1 [file2]
- m: Compare each time sample. Default is false, i.e. match "time"
  coordinate values before comparing
- v: Verbose output
- d dimname:start[=count]
  Print variable values for the specified dimname index subrange.

Users Guide:
-----------

cprnc is a Fortran-90 application. It relies on netcdf version 3 or later and uses the f90 netcdf interfaces. It requires a netcdf include file and a netcdf library. The Makefile assumes those are in /usr/local/include and /usr/local/lib respectively. Users can override these defaults by setting environment variables INC_NETCDF and LIB_NETCDF to the local values of the netcdf paths. The Makefile has entries for IRIX64, AIX, Darwin, Cray X1E, OSF1, SUN, and Linux. On Linux, entries exist for pgf90 and if95 compilers. The Makefile is quite extensible for new architectures. gmake should be used to build cprnc. The Makefile relies on a hard-wired Depends file.

76
cprnc generates an ascii output file via standard out. It initially summarizes some characteristics of the input file[s]. A compare file is generally 132 characters wide and an analyze file is less than 80 characters wide.

In analyze mode, the output for a field looks like

```
(lon, lat, time, -----)
259200 (587, 134, 1) (269, 59, 1)
FX1 96369 8.2731604039625E+02 0.000000000000000E+00
avg abs field values: 9.052845920820910E+01
```

and a guide to this information is printed at the top of the file

```
(dim1, dim2, dim3, dim4)
ARRSIZ1 (indx1, indx2, indx3) file 1
FIELD NVALID MAX MIN
```

The first 10 characters of the field name are identified in the first dozen columns of the third line.
The first line summarizes the names of the dimensions of the field.
The second line summarizes the indices of the maximum and minimum value of the field for the first three dimensions. If the fourth dimension exists, it’s always assumed to be time. Time is handled separately.
The third line summarizes the number of valid values in the array and the maximum and minimum value over those valid values. Invalid values are identified to be “fill” values.
The last line summarizes some overall statistics including the average absolute value of the valid values of the field.

In comparison mode, the output (132 chars wide) for a field looks like

```
96369 (lon, lat, time)
259200 (422, 198, 1) (203, 186, 1) (47, 169, 1)
FIRA 96369 1.466549530029297E+02 -3.922052764892578E+01 \
-3.037954139709473E+01 1.084177169799805E+02 3.982142448425293E+00
259200 (156, 31, 1) (573, 178, 1) \
avg abs field values: 6.778244097051392E+01 rms diff: 1.4E+01 avg rel diff(npos): 4.6E-02
digits(ndif): 1.2 worst: 0.0
```

and a guide to this information is printed at the top of the file

```
NDIFFS (dim1, dim2, dim3, dim4, ...)
ARRSIZ1 (indx1, indx2, indx3, ...) file 1
FIELD NVALID1 MAX1 MIN1 DIFFMAX VALUES RDIFMAX VALUES
NVALID2 MAX2 MIN2
ARRSIZ2 (indx1, indx2, indx3, ...) file 2
```

The information content is identical to the information in analyze mode with the following additions. Two additional lines are added in the main body. Lines 4 and 5 are identical to line 3 and 2 respectively but are associated with file 2 instead of file 1.
In addition, the right hand side of lines 2, 3, and 4 contain information about the maximum difference, the location and values of the maximum difference, the relative difference and the location and values of the maximum relative difference. The last two lines summarize some overall statistics including average absolute values of the field on the two files, rms difference, average relative difference, average number of digits that match, and the worst case for the number of digits that match.

At the end of the output file, a summary is presented that looks like

```
SUMMARY of cprnc:
A total number of 119 fields were compared
of which 83 has non-zero differences
including 0 that had inconsistent size/shape
A total number of 0 fields in file 1 were analyzed (non-compare mode)
A total number of 10 fields in file 1 could not be analyzed at all
A total number of 0 fields in file 2 were analyzed (non-compare mode)
```
This summarizes the number of fields that were compared, that differed and the number of fields that could not be compared but were analyzed.

Developers Guide:  
-----------------

The tool works as follows.

Fields can be analyzed if they are int, float or double and have between 0 and n dimensions.

In general, fields that appear on both files are compared. If they are sizes, no difference statistics are computed and only a summary of the fields on the files are presented. If fields only appear on one file, those fields are analyzed.

The unlimited dimension is treated uniquely. In general, for files that have a dimension named "time", the time axes are compared and matching time values on the two files are compared one timestep at a time. Time values that don’t match are skipped. To override the matching behaviour, use cprnc -m. In this mode, timestamps are compared in indexical space. In analyze mode, the fields are analyzed one timestamp at a time. In general, if there is a "time" axis, it will be the outer-most loop in the output analysis. In compare mode, fields with a time axis and a timestamp that are not common between the two files are ignored.

Note: To compare files with OUT a time axis you can use the cprnc.ncl NCL script in models/lnd/clm/tools/ncl_scripts. It won’t give you the details on the differences but will report if the files are identical or different.

Using interpinic to interpolate initial conditions to different resolutions

"interpinic" is used to interpolate initial conditions from one resolution to another. In order to do the interpolation you must first run CLM to create a restart file to use as the "template" to interpolate into. Running from arbitrary initial conditions (i.e. finidat = ’’) for a single time-step is sufficient to do this. Make sure the model produces a restart file. You also need to make sure that you setup the same configuration that you want to run the model with, when you create the template file.

Command line options to interpinic:

- i = Input filename to interpolate from
- o = Output interpolated file, and starting template file

There is a sample template file in the models/lnd/clm/tools/interpinic directory and can be used to run interpolate to. However, this file was created with an older version of CLM and hence we actually recommend that you would do a short run with CLM to create a template file to use.
Example 2-1. Example of running CLM to create a template file for interpinic to interpolate to

```bash
> cd scripts
> ./create_newcase -case cr_f10_TmpltI1850CN -res f10_f10 -compset I1850CN
> -mach bluefire
> cd cr_f10_TmpltI1850CN
Set starting date to end of year
> ./xmlchange -file env_conf.xml -id RUN_STARTDATE -val 1948-12-31
Set year align to starting year
> ./xmlchange -file env_conf.xml -id DATM_CLMNCEP_YR_ALIGN -val 1948
Set to run a cold start
> ./xmlchange -file env_conf.xml -id CLM_FORCE_COLDSTART -val on
Set to run only a single day, so a restart file will be created on Jan/1/1949
> ./xmlchange -file env_run.xml -id STOP_N -val 1
Then configure, build and run as normal
> ./configure -case
> ./cr_f10_TmpltI1850CN.bluefire.build
> ./cr_f10_TmpltI1850CN.bluefire.submit
And copy the resulting restart file to your interpinic directory
> cd ../models/lnd/clm/tools/interpinic
> cp /ptmp/$LOGIN/cr_f10_TmpltI1850CN/run/cr_f10_TmpltI1850CN.clm2.r.1949-01-01-00000.nc .
```

In the next example we build `interpinic` optimized with shared memory on for 64 threads so that it runs as fast as possible, to interpolate one of the standard 1-degree datasets to the above 10x15 template file that we created.

Example 2-2. Example of building and running interpinic to interpolate a 1-degree `finidat` dataset to 10x15

```bash
> cd models/lnd/clm/tools/interpinic
> gmake OPT=TRUE SMP=TRUE
> env OMP_NUM_THREADS=64 ./interpinic -o cr_f10_TmpltI1850CN.clm2.r.1949-01-01-00000.nc /
> -i /fs/cgd/csm/inputdata/ccsm4_init/b40.1850.track1.1deg.006/0863-01-01/b40.1850.track1.1deg.006.clm2.r.0863-01-01-00000.nc
```

**Tip:** Running `interpinic` at high resolution can take a long time, so we recommend that you always build it optimized and with shared memory processing on, to cut down the run time as much as possible.

**Warning**

`interpinic` does NOT work for CNDV (bgc=cndv).

In Appendix B we give a simpler way to run `interpinic` for several standard resolutions at once, with a script to loop over several resolutions. This is useful for CLM developers who need to create many `finidat` files at once.
Chapter 2. Using the CLM tools to create your own input datasets

Using mkgriddata to create grid datasets

**mkgriddata** is used to create grid, fraction, and topography datasets to run CLM at a new resolution. It is typically the first step in creating datasets needed to run CLM at a new resolution (followed by **mksurfdata**, and then the interpolation programs, **aerdepregrid.ncl** and **ndepregrid.ncl** when running with CN).

**mkgriddata namelist**

**mkgriddata** is controlled by a namelist. There are ten different namelist items, and you need to use enough of them so that files will be output. The different types of input datasets contain different input data types, that correspond to the three different types of output files: grid, fraction, and topography. Output files for each of these will only be output if there is input data that correspond to these. If you only have input data for grid locations -- you will only get an output grid file. If you have both grid and fraction data you will get grid and fraction data files. If you also have topography data you will also get topo files.

Namelist options to **mkgriddata** include:

- mksrf_fnavyoro -- Navy orography file to use for land fraction and surface heights.
- mksrf_frawtopo -- Raw topography file with just surface heights.
- mksrf_fcamfile -- CAM initial conditions file with land-fractions and topography
- mksrf_fclmgrid -- CLM grid file
- mksrf_fccsmdom -- CESM domain file
- mksrf_fcamtopo -- CAM topography file
- mksrf_lsmlon -- number of longitude for regional grid
- mksrf_lsmlat -- number of latitudes for regional grid
- mksrf_edgen -- Northern edge for regional grid
- mksrf_edgee -- Southern edge for regional grid
- mksrf_edges -- Eastern edge for regional grid
- mksrf_edgew -- Western edge for regional grid

You need to enter one of the following four options:

- mksrf_fnavyoro - high resolution topo dataset (topo data)
- mksrf_lsmlon - number of longitudes
- mksrf_lsmlat - number of latitudes
- mksrf_edgen - northern edge of grid (degrees)
- mksrf_edgee - southern edge of grid (degrees)
- mksrf_edges - eastern edge of grid (degrees)
- mksrf_edgew - western edge of grid (degrees)

or

- mksrf_fcamfile - CAM topo file (grid and possibly fraction data)

or

- mksrf_fccsmdom - CESM domain file (both grid, and fraction data)

or
Chapter 2. Using the CLM tools to create your own input datasets

mksrf_fclmgrid - CLM grid or surface dataset file (grid data)

Note, you can provide more than one of the needed datasets, and the output data will be determined by the datasets according to an order of precedence. The order of precedence for data is as follows:

1. mksrf_fcamfile
2. mksrf_fclmgrid
3. mksrf_fnavyoro
4. mksrf_fccsmdom

Grid data then will be established by the file with the highest precedence. CESM domain files sometimes have latitudes and longitudes that are "off" from the standard by a small amount. By establishing an order of precedence you can ensure that grid locations exactly match a given standard file, even if the values in the domain file are off from that.

There are three different major modes for using "mkgriddata" to create grid files for CLM:

mksrf_fnavyoro -- Navy orography file to use for land fraction and surface heights.
mksrf_frawtopo -- Raw topography file with just surface heights.
mksrf_fcamfile -- CAM initial conditions file with land-fractions and topography
mksrf_fclmgrid -- CLM grid file
mksrf_fccsmdom -- CESM domain file
mksrf_fcamtopo -- CAM topography file
mksrf_lsmlon -- number of longitude for regional grid
mksrf_lsmlat -- number of latitudes for regional grid
mksrf_edgen -- Northern edge for regional grid
mksrf_edgee -- Southern edge for regional grid
mksrf_edges -- Eastern edge for regional grid
mksrf_edgew -- Western edge for regional grid

You need to enter one of the following four options:

mksrf_fnavyoro - high resolution topo dataset (topo data)
mksrf_lsmlon - number of longitudes
mksrf_lsmlat - number of latitudes
mksrf_edgen - northern edge of grid (degrees)
mksrf_edgee - eastern edge of grid (degrees)
mksrf_edges - southern edge of grid (degrees)
mksrf_edgew - western edge of grid (degrees)

or

mksrf_fcamfile - CAM topo file (grid and possibly fraction data)

or

mksrf_fccsmdom - CESM domain file (both grid, and fraction data)

or
Chapter 2. Using the CLM tools to create your own input datasets

**mksrf_fclmgrid** - CLM grid or surface dataset file (grid data)

Note, you can provide more than one of the needed datasets, and the output data will be determined by the datasets according to an order of precedence. The order of precedence for data is as follows:

1. mksrf_fcamfile
2. mksrf_fclmgrid
3. mksrf_fnavyoro
4. mksrf_fccsmdom

Grid data then will be established by the file with the highest precedence. CESM domain files sometimes have latitudes and longitudes that are "off" from the standard by a small amount. By establishing an order of precedence you can ensure that grid locations exactly match a given standard file, even if the values in the domain file are off from that.

There are three different major modes for using **mkgriddata** to create grid files for CLM:

- Convert CESM domain files to CLM grid files
- Create single point or regional area grid files
- Convert CAM files to CLM grid files

**Convert CESM domain files to CLM grid files**

CESM domain files such as used for DATM, include all the information needed to create CLM grid and fraction files.

**Example 2-3. Example mkgriddata namelist to convert CESM 4x5 domain files to CLM grid files**

```plaintext
&clmexp
 mksrf_fccsmdom= '/fs/cgd/csm/inputdata/lnd/dlnd7/domain.lnd.4x5_gx3v5.060404.nc'
 mksrf_fclmgrid= '/fs/cgd/csm/inputdata/lnd/clm2/griddata/griddata_4x5_060404.nc'
/
```

**Tip:** Notice that in the above example, a CLM grid file is included as well, even though it's not required. The reason for this is to ensure that the latitude and longitudes on the output files exactly match a standard grid file.
Chapter 2. Using the CLM tools to create your own input datasets

Create single point or regional area grid files

The process to create single-point or regional area CLM grid files is the same. You enter the number of latitudes and longitudes you want on your output file and the extent of the grid: North, East, South and West. You also tell `mkgriddata` that you are entering a "regional" grid and you also enter the standard Navy orography dataset (or your own orography file if desired). For a single point you simply enter "1" for the number of latitudes and longitudes, but you still enter the grid extent (of the single grid cell). Here is a sample regional namelist to create a 5x5 regional grid over the Amazon:

```
&clmexp
 mksrf_fnavyoro= "/fs/cgd/csm/inputdata/lnd/clm2/rawdata/mksrf_navyoro_20min.c010129.nc"
 mksrf_lsmlon = 5
 mksrf_lsmlat = 5
 mksrf_edgee = 303.75
 mksrf_edgew = 286.25
 mksrf_edges = -15.
 mksrf_edgen = -4.
/
```

```
Example 2-4. Example mkgriddata namelist to create regional grid over Amazon
```

**Warning**

Currently you can **NOT** have regional grids that straddle both sides of the Greenwich (longitude = zero) line.

**Important:** You should enter longitudes with values from 0 to 360 East.

Convert CAM files to CLM grid files (deprecated)

Older CAM initial files included all the information needed to create CLM grid files. Newer CAM files no longer include land fraction data. Hence you can use CAM files to give you the grid coordinates, but you need other data to give you the land-mask and topography. Since, CAM files no longer contain the needed information, this option is now deprecated. In most cases you should use one of the other two options.

Using mkdatadomain to create domain datasets for DATM or docn from CLM grid datasets

"mkdatadomain" is used to convert CLM grid and fraction datasets into domain datasets that can be used by either the "datm" or "docn" models. Most often CLM users will want to convert the grid datasets they just created using `mkgriddata` into domain datasets to be used by DATM for an "I" case.
Chapter 2. Using the CLM tools to create your own input datasets

**mkdatadomain** is controlled by a namelist, and has a very straight forward operation with only four namelist items all of which are required. You specify which output mode you want "datm" or "docn", and then set the input CLM grid and frac datasets, and the output domain file.

**Example 2-5. Example mkdatadomain namelist to create a domain file from CLM frac and grid data files**

```plaintext
&domain_nl
 dtype = "datm"
 f_fracdata = '/fs/cgd/csm/inputdata/lnd/clm2/griddata/fracdata_4x5_USGS_070110.nc'
 f_griddata = '/fs/cgd/csm/inputdata/lnd/clm2/griddata/griddata_4x5_060404.nc'
 f_domain = 'domain.lnd.fv4x5_USGS.090117.nc'
/
```

**Using mksurfdata to create surface datasets from grid datasets**

**mksurfdata** is used to create surface-datasets from grid datasets and raw datafiles at half-degree resolution to produce files that describe the surface characteristics needed by CLM (fraction of grid cell covered by different land-unit types, and fraction for different vegetation types, as well as things like soil color, and soil texture, etc.). To run **mksurfdata** you can either use the **mksurfdata.pl** script which will create namelists for you using the **build-namelist** XML database, or you can run it by hand using a namelist that you provide (possibly modeled after an example provided in the `models/lnd/clm/tools/mksurfdata` directory). The namelist for **mksurfdata** is sufficiently complex that we recommend using the **mksurfdata.pl** tool to build them. In the next section we describe how to use the **mksurfdata.pl** script and the following section gives more details on running **mksurfdata** by hand and the various namelist input variables to it.

**Running mksurfdata.pl**

The script **mksurfdata.pl** can be used to run the **mksurfdata** program for several configurations, resolutions, simulation-years and simulation year ranges. It will create the needed namelists for you and move the files over to your inputdata directory location (and create a list of the files created, and for developers this file is also a script to import the files into the svn inputdata repository). It will also use the **build-namelist** XML database to determine the correct input files to use, and for transient cases it will create the appropriate **mksrf_fdynuse** file with the list of files for each year needed for this case. And in the case of urban single-point datasets (where surface datasets are actually input into **mksurfdata**) it will do the additional processing required so that the output dataset can be used once again by **mksurfdata**. Because, it figures out namelist and input files for you, it is recommended that you use this script for creation of standard surface datasets. If you need to create surface datasets for customized cases, you might need to run **mksurfdata** on it’s own. But you could use **mksurfdata.pl** with the "-debug" option to give you a namelist to start from. For help on **mksurfdata.pl** you can use the "-help" option as below:

```
> cd models/lnd/clm/tools/mksurfdata
```
Chapter 2. Using the CLM tools to create your own input datasets

> mksurndata.pl -help

The output of the above command is:

SYNOPSIS

mksurndata.pl [options]

OPTIONS

- crop  Add in crop datasets
- dinlc [or -l] Enter the directory location for inputdata
  (default /fs/cgd/csm/inputdata)
- debug [or -d] Don’t actually run -- just print out what
  would happen if ran.
- dynpft "filename" Dynamic PFT/harvesting file to use
  (rather than create it on the fly)
  (must be consistent with first year)
- exedir "directory" Directory where mksurndata program is
  (by default assume it’s in the current directory)
- glc_nec "number" Number of glacier elevation classes to use (by default 0)
- years [or -y] Simulation year(s) to run over (by default 1850,2000)
  (can also be a simulation year range: i.e. 1850-2000)
- help [or -h] Display this help.
- res [or -r] "resolution" Resolution(s) to use for files (by default all).
- rcp [or -c] "rep-con-path" Representative concentration pathway(s) to use for
  future scenarios
  (by default -999.9, where -999.9 means historical).
- usrename "clm_usrdat_name" CLM user data name to find grid file with.

NOTE: years, res, and rcp can be comma delimited lists.

OPTIONS to override the mapping of the input gridded data with hardcoded input

- pft_frc "list of fractions" Comma delimited list of percentages for veg types
- pft_idx "list of veg index" Comma delimited veg index for each fraction
- soil_clay "% of clay" % of soil that is clay
- soil_coll "soil color" Soil color (1 [light] to 20 [dark])
- soil_fmx "soil fmax" Soil maximum saturated fraction (0-1)
- soil_snd "% of sand" % of soil that is sand

To run the script with optimized mksurndata for a 4x5 degree grid for 1850 conditions, on bluefire you would do the following:

Example 2-6. Example of running mksurndata.pl to create a 4x5 resolution fsurdat for a 1850 simulation year

> cd models/lnd/clm/tools/mksurndata
> gmake
> mksurndata.pl -y 1850 -r 4x5
Chapter 2. Using the CLM tools to create your own input datasets

Running mksurfdata by Hand

In the above section we show how to run mksurfdata through the mksurfdata.pl using input datasets that are in the build-namelist XML database. When you are running with input datasets that are NOT available in the XML database you either need to add them as outlined in Chapter 3, or you need to run mksurfdata by hand, as we will outline here.

Preparing your mksurfdata namelist

When running mksurfdata by hand you will need to prepare your own input namelist. There are sample namelists that are setup for running on the NCAR machine bluefire. You will need to change the filepaths to run on a different machine. The list of sample namelists include:

- mksurfdata.namelist -- standard sample namelist.
- mksurfdata.regional -- sample namelist to build for a regional grid dataset (5x5_amazon)
- mksurfdata.singlept -- sample namelist to build for a single point grid dataset (1x1_brazil)

Note, that one of the inputs mksrf_fdynuse is a filename that includes the filepaths to other files. The filepaths in this file will have to be changed as well. You also need to make sure that the line lengths remain the same as the read is a formatted read, so the placement of the year in the file, must remain the same, even with the new filenames. One advantage of the mksurfdata.pl script is that it will create the mksrf_fdynuse file for you.

We list the namelist items below. Most of the namelist items are filepaths to give to the input half degree resolution datasets that you will use to scale from to the resolution of your grid dataset. You must first specify the input grid dataset for the resolution to output for:

1. mksrf_fgrid Grid dataset

Then you must specify settings for input high resolution datafiles

1. mksrf_ffrac land fraction and land mask dataset
2. mksrf_fglacier Glacier dataset
3. mksrf_flai Leaf Area Index dataset
4. mksrf_flanwat Land water dataset
5. mksrf_forganic Organic soil carbon dataset
6. mksrf_fmax Max fractional saturated area dataset
7. mksrf_fsoicol Soil color dataset
8. mksrf_fsoitex Soil texture dataset
9. mksrf_ftopo Topography dataset (this is used to limit the extent of urban regions and is used for glacier multiple elevation classes)
10. mksrf_furban Urban dataset
11. mksrf_fvegtyp PFT vegetation type dataset
12. mksrf_fvocef Volatile Organic Compound Emission Factor dataset

You specify the ASCII text file with the land-use files.
Chapter 2. Using the CLM tools to create your own input datasets

1. **mksrf_fdynuse** "dynamic land use" for transient land-use/land-cover changes. This is an ASCII text file that lists the filepaths to files for each year and then the year it represents (note: you MUST change the filepaths inside the file when running on a machine NOT at NCAR). We always use this file, even for creating datasets of a fixed year. Also note that when using the "pft_" settings this file will be an XML-like file with settings for PFT’s rather than filepaths (see the Section called *Experimental options to mksurfdata* below).

And optionally you can specify settings for:

1. **all_urban** If entire area is urban (typically used for single-point urban datasets, that you want to be exclusively urban)
2. **mksrf_firrig** Irrigation dataset, if you want activate the irrigation model over generic cropland (experimental mode, normally NOT used)
3. **mksrf_gridnm** Name of output grid resolution (if not set the files will be named according to the number of longitudes by latitudes)
4. **mksrf_gridtype** Type of grid (default is 'global')
5. **nglcec** number of glacier multiple elevation classes. Can be 0, 1, 3, 5, or 10. When using the resulting dataset with CLM you can then run with **glc_nec** of either 0 or this value. (experimental normally use the default of 0, when running with the land-ice model in practice only 10 has been used)
6. **numpft** number of Plant Function Types (PFT) in the input vegetation **mksrf_fvegtyp** dataset. You change this to 20, if you want to create a dataset with prognostic crop activated. The vegetation dataset also needs to have prognostic crop types on it as well. (experimental normally not changed from the default of 16)
7. **outnc_large_files** If output should be in NetCDF large file format
8. **outnc_double** If output should be in double precision (normally we turn this on)
9. **pft_frc** array of fractions to override PFT data with for all gridpoints (experimental mode, normally NOT used).
10. **pft_idx** array of PFT indices to override PFT data with for all gridpoints (experimental mode, normally NOT used).
11. **soil_clay** percent clay soil to override all gridpoints with (experimental mode, normally NOT used).
12. **soil_color** Soil color to override all gridpoints with (experimental mode, normally NOT used).
13. **soil_fmax** Soil maximum fraction to override all gridpoints with (experimental mode, normally NOT used).
14. **soil_sand** percent sandy soil to override all gridpoints with (experimental mode, normally NOT used).

After creating your namelist, when running on a non NCAR machine you will need to get the files from the inputdata repository. In order to retrieve the files needed for mksurfdata you can do the following on your namelist to get the files from the inputdata repository, using the **check_input_data** script which also allows you to export data to your local disk.
Chapter 2. Using the CLM tools to create your own input datasets

Example 2-7. Getting the raw datasets for mksurfdata to your local machine using the check_input_data script

```bash
> cd models/ind/clm/tools/mksurfdata
First remove any quotes and copy into a filename that can be read by the
check_input_data script
> sed "s/'//g" namelist > clm.input_data_list
Run the script with -export and give the location of your inputdata with $CSMDATA
> ../../../../../scripts/ccsm_utils/Tools/check_input_data -datalistdir . \
 -inputdata $CSMDATA -check -export
You must then do the same with the fdynuse file referred to in the namelist
in this case we add a file = to the beginning of each line
> awk '{print "file = "$1}' pftdyn_hist_simyr2000-2000.txt > clm.input_data_list
Run the script with -export and give the location of your inputdata with $CSMDATA
> ../../../../../scripts/ccsm_utils/Tools/check_input_data -datalistdir . \
 -inputdata $CSMDATA -check -export
```

**Experimental options to mksurfdata**

The options: `pft_frc`, `pft_idx`, `soil_clay`, `soil_color`, `soil_fmax`, and `soil_sand` are also new and considered experimental. They provide a way to override the PFT and soil values for all grid points to the given values that you set. This is useful for running with single-point tower sites where the soil type and vegetation is known. Note that when you use `pft_frc`, all other landunits will be zeroed out, and the sum of your `pft_frc` array MUST equal 100.0. Also note that when using the "pft_{" options the mksrf_fdynuse file instead of having filepath’s will be an XML-like file with PFT settings. Unlike the file of file-paths, you will have to create this file by hand, mksurfdata.pl will NOT be able to create it for you (other than the first year which will be set to the values entered on the command line). Note, that when PTCLM is run, it CAN create these files for you from a simpler format (see the Section called Dynamic Land-Use Change Files for use by PTCLM in Chapter 6). Instead of a filepath you have a list of XML elements that give information on the PFT’s and harvesting for example:

```xml
<pft_f>100</pft_f><pft_i>1</pft_i><harv>0,0,0,0,0</harv><graz>0</graz>
```

So the `<pft_f>` tags give the PFT fractions and the `<pft_i>` tags give the index for that fraction. Harvest is an array of five elements, and grazing is a single value. Like the usual file each list of XML elements goes with a year, and there is limit on the number of characters that can be used.

**Standard Practices when using mksurfdata**

In this section we give the recommendations for how to use mksurfdata to give similar results to the files that we created when using it.

If you look at the standard surface datasets that we have created and provided for use, there are three practices that we have consistently done in each (you also see these in the sample namelists and in the mksurfdata.pl script). The first is that we always output data in double precision (hence `outnc_double` is set to `.true.`). The next is that we always use the procedure for creating transient datasets (using mksrf_fdynuse) even when creating datasets for a fixed simulation year. This is to ensure that the fixed year datasets will be consistent with the transient datasets. When this is done a "surfdata.pftdyn" dataset will be created -- but will NOT be used in CLM. If you look at the sample namelist
Chapter 2. Using the CLM tools to create your own input datasets

mksurfdata.namelist you note that it sets mksrf_fdynuse to the file pftdyn_hist_simyr2000.txt, where the single file entered is the same PFT file used in the rest of the namelist (as mksrf_fvegtyp). The last practice that we always do is to always set mksrf_ftopo, even if glacier elevation classes are NOT active. This is important in limiting urban areas based on topographic height, and hence is important to use all the time. The glacier multiple elevation classes will be used as well if you are running a compset with the active glacier model.

There are two other important practices for creating urban single point datasets. The first is that you often will want to set all_urban to .true. so that the dataset will have 100% of the gridcell output as urban rather than some mix of: urban, vegetation types, and other landunits. The next practice is that most of our specialized urban datasets have custom values for the urban parameters, hence we do NOT want to use the global urban dataset to get urban parameters -- we use a previous version of the surface dataset for the urban parameters. However, in order to do this, we need to append onto the previous surface dataset the grid and land mask/land fraction information from the grid and fraction datasets. This is done in mksurfdata.pl using the NCO program ncks. An example of doing this for the Mexico City, Mexico urban surface dataset is as follows:

```bash
> ncks -A $CSMDATA/lnd/clm2/griddata/griddata_1x1pt_mexicocityMEX_c090715.nc \
$CSMDATA/lnd/clm2/surfdata/surfdata_1x1_mexicocityMEX_simyr2000_c100407.nc
> ncks -A $CSMDATA/lnd/clm2/griddata/fracdata_1x1pt_mexicocityMEX_navy_c090715.nc \
$CSMDATA/lnd/clm2/surfdata/surfdata_1x1_mexicocityMEX_simyr2000_c100407.nc
```

Note, if you look at the current single point urban surface datasets you will note that the above has already been done.

The final issue is how to build mksurfdata. When NOT optimized mksurfdata is very slow, and can take many hours to days to even run for medium resolutions such as one or two degree. So usually you will want to run it optimized. Possibly you also want to use shared memory parallelism using OpenMP with the SMP option. The problem with running optimized is that answers will be different when running optimized versus non-optimized for most compilers. So if you want answers to be the same as a previous surface dataset, you will need to run it on the same platform and optimization level. Likewise, running with or without OpenMP may also change answers (for most compilers it will NOT, however it does for the IBM compiler). However, answers should be the same regardless of the number of threads used when OpenMP is enabled. Note, that the output surface datasets will have attributes that describe whether the file was written out optimized or not, with threading or not and the number of threads used, to enable the user to more easily try to match datasets created previously. For more information on the different compiler options for the CLM4 tools see the Section called Common environment variables and options used in building the FORTRAN tools.

Using NCL scripts ndepregrid.ncl and aerdepregrid.ncl to interpolate aerosol deposition datasets

Unlike the other tools, these are NCAR Command Language (NCL) scripts and you will need to get a copy of NCL in order to use them. You also won’t have to build an executable in order to use them, hence no Makefile is provided. NCL is provided for free download as either binaries or source code from: http://www.ncl.ucar.edu/. The NCL web-site also contains documentation on NCL and it’s use.
By default at this point neither of these scripts HAS to be used, as the model is now constructed to read aerosol and Nitrogen deposition from 2-degree datasets and interpolate to the model resolution on the fly. The main reason you might want to do this now, is for better performance for single-point simulations.

Both the ndepregrid.ncl and aerdepregrid.ncl scripts have similar interfaces and you customize the output resolution and characteristics based on the settings of environment variables that you set (if you don’t set any of the variables, the script has defaults that it will use). The list of environment variables that can be set are:

- RES -- output resolution name
- RCP -- representative concentration pathway for future scenarios (example 2.6, 4.5, 6, or 8.5)
- SIM_YR -- simulation year (example 1850 or 2000)
- SIM_YR_RNG -- simulation year range (example 1850-2000 or 1850-2100)
- GRDFIL -- full pathname of grid file to use (in place of getting the default grid file based on the RES value)
- CSMDATA -- CESM inputdata directory
- CLM_ROOT -- root directory for CLM (models/lnd/clm directory)

Important: You MUST provide either RES or both GRDFIL AND RES. If you just give RES the default namelist database in models/lnd/clm/bld will be used to find the default grid file based on the resolution name RES. If you provide GRDFIL the input pathname of the gridfile provided will be used, and the output filename will include RES as part of it's name to designate it as an output file at that resolution.

Both scripts assume that you will be interpolating from a native resolution of 1.9x2.5 and using the default files found in the namelist database to interpolate from. If you want to interpolate from another resolution or use other files, you would need to edit the scripts to do so. Both scripts also use a bilinear interpolation to do the regridding. The environment variables: RCP, SIM_YR, and SIM_YR_RNG will be used to query the namelist database to determine which native dataset to interpolate from. If you don’t provide valid values for these variables, it won’t be able to find a dataset to interpolate from. You can use the build-namelist script to query what the valid values for these can be. Likewise, when you use RES to determine the grid file to interpolate to, it needs to be a valid value from the namelist database.

The scripts can be used to interpolate from (and create output) constant or transient datasets. Constant datasets specify the SIM_YR and set SIM_YR_RNG to constant (which is also the default). Transient datasets need to specify both SIM_YR and SIM_YR_RNG, where SIM_YR is set to the first year in the interval (typically 1850).

The default for CSMDATA works for NCAR computers, but will need to be set to the top level directory location of your CESM input data on other computers. If you set this as a default for your shell when you login (for example with your $HOME/.cshrc if you use csh) you won’t have to set it each time you run the script. CLM_ROOT will default to the proper location when you run it in the models/lnd/clm/tools/ncl_script directory. It is only useful if you want to run the script out of a different directory.

**Using ndepregrid.ncl to interpolate Nitrogen deposition datasets**

ndepregrid.ncl interpolates the Nitrogen deposition datasets from one resolution to another.
Chapter 2. Using the CLM tools to create your own input datasets

**Note:** Interpolating Nitrogen deposition files is no longer needed, because the model can read Nitrogen deposition files at one resolution and interpolate to the resolution the model is running at on the fly. Interpolating to another resolution is only useful for very course resolutions, if you want to save some computing resources in reading larger datasets. For example, this may be useful in obtaining single-point datasets.

For example, to interpolate to an output resolution of 0.9x1.25, for a constant simulation-year of 1850, you would do the following:

```
> env RES=0.9x1.25 SIM_YR=1850 ncl ndepregrid.ncl
```

Using aerdepregrid.ncl to interpolate Aerosol deposition datasets

*aerdepregrid.ncl* interpolates the Aerosol deposition datasets from one resolution. It can be used to interpolate either constant datasets (for example: `aerosoldep_monthly_2000_0.9x1.25_c090828.nc`) or transient datasets (for example: `aerosoldep_monthly_1849-2006_0.9x1.25_c090830.nc`).

**Note:** Interpolating aerosol deposition files is no longer needed, because the DATM model can read aerosol deposition files at one resolution and interpolate to the resolution the model is running at on the fly. Interpolating to another resolution is only useful for very course resolutions, if you want to save some computing resources in reading larger datasets. For example, this may be useful in obtaining single-point datasets.

For example, to interpolate to an output resolution of 4x5, for a transient simulation-year range of 1850 to 2100 and the rcp of 8.5, you would do the following:

```
> env RES=4x5 SIM_YR=1850 SIM_YR_RNG=1850-2100 RCP=8.5 ncl ndepregrid.ncl
```

How to Customize Datasets for particular Observational Sites

There are two ways to customize datasets for a particular observational site. The first is to customize the input to the tools that create the dataset, and the second is to over-write the default data after you’ve created a given dataset. Depending on the tool it might be easier to do it one way or the other. In Table 3-1 we list the files that are most likely to be customized and the way they might be customized. Of those
Chapter 2. Using the CLM tools to create your own input datasets

files, the ones you are most likely to customize are: fatmlndfrc, fsurdat, faerdep (for DATM), and stream_fldfilename_ndep. Note mksurfdata as documented previously has options to overwrite the vegetation and soil types. For more information on this also see the Section called Creating your own single-point/regional surface datasets in Chapter 5 and PTCLM uses these methods to customize datasets see Chapter 6.

Another aspect of customizing your input datasets is customizing the input atmospheric forcing datasets. See the the Section called Running with your own atmosphere forcing in Chapter 5 for more information on this. Also the chapter on PTCLM in the Section called Converting AmeriFlux Data for use by PTCLM in Chapter 6 has information on using the AmeriFlux tower site data as atmospheric forcing.

Conclusion of tools description

We’ve given a description of how to use the different tools with CLM to create customized datasets. In the next chapter we will talk about how to make these files available for build-namelist so that you can easily create simulations that include them. In the chapter on single-point and regional datasets we also give an alternative way to enter new datasets without having to edit files.
Chapter 3. Adding New Resolutions or New Files to the build-namelist Database

In the last chapter we gave the details on how to create new files for input into CLM. These files could be either global resolutions, regional-grids or even a single grid point. If you want to easily have these files available for continued use in your development you will then want to include them in the build-namelist database so that build-namelist can easily find them for you. You can deal with them, just by editing your namelist by hand (or using a user_nl_clm namelist file), or by using CLM_USRDAT_NAME. Another way to deal with them is to enter them into the database for build-namelist, so that build-namelist can find them for you. This keeps one central database for all your files, rather than having multiple locations to keep track of files. If you have a LOT of files to keep track of it also might be easier than keeping track by hand, especially if you have to periodically update your files. If you just have a few quick experiments to try, for a short time period you might be best off using the other methods mentioned above.

There are two parts to adding files to the build-namelist database. The first part is adding new resolution names which is done in the models/lnd/clm/bld/namelist_files/namelist_definition.xml file (and in the models/lnd/clm/bld/config_files/config_definition.xml file when adding supported single-point datasets). The second part is actually adding the new filenames which is done in the models/lnd/clm/bld/namelist_files/namelist_defaults_clm.xml file (models/lnd/clm/bld/namelist_files/namelist_defaults_clm_tools.xml file for CLM tools). If you aren’t adding any new resolutions, and you are just changing the files for existing resolutions, you don’t need to edit the namelist_definition file.

Managing Your Own Data-files

If you are running on a supported machine (such as bluefire or jaguar) the standard input datasets will already be available and you won’t have to check them out of the subversion inputdata server. However, you also will NOT be able to add your own datafiles to these standard inputdata directories -- because most likely you won’t have permissions to do so. In order to add files to the XML database or to use CLM_USRDAT_NAME you need to put data in the standard locations so that they can be found. The recommended way to do this is to use the link_dirtree tool in the CESM scripts. Some information on link_dirtree is available in the CESM1.0.4 Scripts User’s Guide (http://www.cesm.ucar.edu/models/cesm1.0/cesm). We also have some examples of it’s use here and in other sections of this User’s Guide.

Using link_dirtree is quite simple, you give the directory where data exists and then the directory that you want to create where datasets will point to the original source files. In the example below we use "$HOME/inputdata", but MYCSMDATA could be any directory you have access to where you want to put your data.

```
> cd scripts
First make sure you have a inputdata location that you can write to
You only need to do this step once, so you won’t need to do this in the future
(except to bring in any updated files in the original $CSMDATA location).
> setenv MYCSMDATA $HOME/inputdata # Set env var for the directory for input data
> ./link_dirtree $CSMDATA $MYCSMDATA
```
Chapter 3. Adding New Resolutions or New Files to the build-namelist Database

Then when you create a case you will change DIN_LOC_ROOT_CSMDATA to point to the location you linked to rather than the default location.

> ./xmlchange -file env_run.xml -id DIN_LOC_ROOT_CSMDATA -val $MYCSMDATA

In order to list the files that you have created you merely need to use the UNIX command `find` to find the files that are NOT softlinks. So for example executing the following command:

> find $MYCSMDATA -type f -print

for me gives the following list of CLM_USRDAT_NAME files that I have created.

```
/blhome/erik/inputdata/atm/cam/chem/trop_mozart_aero/aero/aerosoldep_monthly_1849-2006_1x1pt_US-Ha1.nc
/blhome/erik/inputdata/atm/cam/chem/trop_mozart_aero/aero/aerosoldep_monthly_1849-2006_13x12pt_f19_alaskaUSA_gx1v6.nc
/blhome/erik/inputdata/atm/cam/chem/trop_mozart_aero/aero/aerosoldep_rcp8.5_monthly_1850-2100_13x12pt_f19_alaskaUSA.nc
/blhome/erik/inputdata/atm/cam/chem/trop_mozart_aero/aero/aerosoldep_rcp4.5_monthly_1850-2100_13x12pt_f19_alaskaUSA.nc
/blhome/erik/inputdata/atm/datm7/domain.clm/domain.lnd.1x1pt_US-Hal_USGS.nc
/blhome/erik/inputdata/atm/datm7/domain.clm/domain.lnd.13x12pt_f19_alaskaUSA_gx1v6.nc
/blhome/erik/inputdata/lnd/clm2/griddata/fracdata_13x12pt_f19_alaskaUSA_gx1v6.nc
/blhome/erik/inputdata/lnd/clm2/griddata/fracdata_1x1pt_US-Ha1_USGS.nc
/blhome/erik/inputdata/lnd/clm2/griddata/topodata_13x12pt_f19_alaskaUSA.nc
/blhome/erik/inputdata/lnd/clm2/griddata/griddata_1x1pt_US-Ha1.nc
/blhome/erik/inputdata/lnd/clm2/griddata/griddata_13x12pt_f19_alaskaUSA.nc
/blhome/erik/inputdata/lnd/clm2/surfdata/surfdata_13x12pt_f19_alaskaUSA_simyr1850.nc
/blhome/erik/inputdata/lnd/clm2/surfdata/surfdata_1x1pt_US-Ha1_simyr2000.nc
/blhome/erik/inputdata/lnd/clm2/surfdata/surfdata.pftdyn_rcp4.5_13x12pt_f19_alaskaUSA_simyr1850.nc
/blhome/erik/inputdata/lnd/clm2/surfdata/surfdata.pftdyn_rcp8.5_13x12pt_f19_alaskaUSA_simyr1850.nc
/blhome/erik/inputdata/lnd/clm2/surfdata/surfdata.pftdyn_1x1pt_US-Hal_simyr1849-2006.nc
/blhome/erik/inputdata/lnd/clm2/surfdata/surfdata.pftdyn_13x12pt_f19_alaskaUSA_simyr1850-2100.nc
```

You can also use `find` to list files that have a particular pattern in the name as well (using the `name` option with wildcards). Also you can always rerun the `link_dirtree` command if any new files are added that you need to be linked into your directory tree. Since, the files are soft-links -- it doesn't take up much space other than the files that you add there. This way all of the files are kept in one place, they are organized by usage according to CESM standards, and you can easily find your own files, and CLM can find them as well.
Adding Resolution Names

If you are adding files for new resolutions which aren’t covered in the namelist_definition file -- you’ll need to add them in. The list of valid resolutions is in the id="res" entry in the models/lnd/clm/bld/namelist_files/namelist_definition.xml file. You need to choose a name for your new resolution and simply add it to the comma delimited list of valid_values for the id="res" entry. The convention for global Gaussian grids is number_of_latitudes x number_of_longitudes. The convention for global finite volume grids is latitude_grid_size x longitude_grid_size where latitude and longitude is measured in degrees. For regional or single-point datasets the names have a grid size number_of_latitudes x number_of_longitudes followed by an underscore and then a descriptive name such as a City name followed by an abbreviation for the Country in caps. The only hard requirement is that names be unique for different grid files. Here’s what the entry for resolutions looks like in the file:

```
<entry id="res" type="char*30" category="default_settings" group="default_settings" valid_values="128x256,64x128,48x96,32x64,8x16,94x192,0.23x0.31,0.47x0.63, 0.9x1.25,1.9x2.5,2.65x3.35,4x5,10x15,5x5,amazon,1x1_tropicAtl, 1x1_camdenNJ,1x1_vancouverCAN,1x1_mexicocityMEX,1x1_asphaltjungleNJ, 1x1_brazil,1x1_urbanc_alpha,0.5x0.5"> Horizontal resolutions </entry>
```

As you can see you just add your new resolution names to the end of the valid_values list.

When using PTCLM and adding supported single-point resolutions, you’ll also want to add these resolutions to the models/lnd/clm/bld/config_files/config_definition.xml under the sitespf_pt name. The entry in that file looks like:

```
<entry id="sitespf_pt" valid_values="none,1x1_brazil,1x1_tropicAtl,5x5_amazon, 1x1_camdenNJ,1x1_vancouverCAN,1x1_mexicocityMEX,1x1_asphaltjungleNJ, 1x1_urbanc_alpha,1x1_numaIA,1x1_smallvilleIA" value="none" category="physics"> Flag to turn on site specific special configuration flags for supported single point resolutions. Currently the only special settings are for MEXICOCITY and VANCOUVER, which make changes to urban parameters. </entry>
```

PTCLM assumes that any supported single-point resolutions are valid settings for sitespf_pt.

Adding or Changing Default Filenames

To add or change the default filenames you edit the models/lnd/clm/bld/namelist_files/namelist_defaults_clm.xml and either change an existing filename or add a new one. Most entries in the default namelist files, include different attributes that describe the different properties that describe the differences in the datasets. Attributes include the: resolution, year to simulation, range of years to simulate for transient datafiles, the land-mask, the representative concentration pathway (rcp) for future scenarios, and the type of biogeochemistry (bgc) model used. For example the fatmgrid for the 1.9x2.5 resolution is as follows:
Chapter 3. Adding New Resolutions or New Files to the build-namelist Database

Other fatmgrid files are distinguished from this one by their resolution (hgrid) attribute.

To add or change the default filenames for CLM tools edit the
models/lnd/clm/bld/namelist_files/namelist_defaults_clm_tools.xml and either
change an existing filename or add a new one. Editing this file is similar to the
namelist_defaults_clm.xml talked about above.

What are the required files?

Different types of simulations and different types of configurations for CLM require different lists of
files. The Carbon Nitrogen (cn) Biogeochemistry model for example requires
stream_fldfilename_ndep files, which are NOT required by other bgc modes. Transient simulations
also require transient datasets, and the names of these datasets are sometimes different from the static
versions (sometimes both are required as in the dynamic PFT cases).

In the following table we list the different files used by CLM, they are listed in order of importance,
dependencies, and customizing. So the required files are all near the top, and the files used only under
different conditions are listed later, and files with the fewest dependencies are near the top, as are the files
that are least likely to be customized.

Table 3-1. Required Files for Different Configurations and Simulation Types

<table>
<thead>
<tr>
<th>Filename</th>
<th>Config. type</th>
<th>Simulation type</th>
<th>Resol. Dependent?</th>
<th>Other Dependencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>fpftcon</td>
<td>ALL</td>
<td>ALL</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fsnowoptics</td>
<td>ALL</td>
<td>ALL</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fsnowaging</td>
<td>ALL</td>
<td>ALL</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fatmgrid</td>
<td>ALL</td>
<td>ALL</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fatmlndfrc</td>
<td>ALL</td>
<td>ALL</td>
<td>Yes</td>
<td>land-mask</td>
</tr>
</tbody>
</table>

Notes

Not usually customized, as describes plant function type properties. PTCLM copies the file for you so that you can customize it if you like, see step 3.d.

Not usually customized as describes global snow optical properties.

Not usually customized as describes global snow aging properties.

Creating, using mkgriddata usually gives you the amount of customization you need, as it just describes the grid and grid extents.
### Chapter 3. Adding New Resolutions or New Files to the build-namelist Database

<table>
<thead>
<tr>
<th>Filename</th>
<th>Config. type</th>
<th>Simulation type</th>
<th>Resol. Dependent?</th>
<th>Other Dependencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>fsurdat</td>
<td>ALL</td>
<td>ALL</td>
<td>Yes</td>
<td>simulation-year</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Describes the land-mask for points with active land, as well as the fraction of each grid-cell covered by land. You might customize it to make sure the land-fraction of your grid-cell matches the expected values for your site. But, usually you will just use what mkgriddata gives you.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fpftdyn</td>
<td>ALL</td>
<td>transient land-use land-cover change</td>
<td>Yes</td>
<td>Simulation year range, and representative concentration pathway (rcp)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>frivinp_rtm</td>
<td>RTM only</td>
<td>ALL</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>We only provide a half-degree global river routing file. If you want to model river flow for a smaller scale, or a basin regional scale, you would need to create your own custom file to do that. Normally, we turn river-routing OFF for regional or single point simulations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>flndtopo</td>
<td>ALL</td>
<td>fine-mesh simulations (specifying land resolution as a finer grid than atmosphere resolution).</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>You may customize to give better surface heights for your site, or input a higher resolution orography file when you create it using mkgriddata.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fatmtopo</td>
<td>ALL</td>
<td>fine-mesh simulations (specifying land resolution as a finer grid than atmosphere resolution).</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Chapter 3. Adding New Resolutions or New Files to the build-namelist Database

<table>
<thead>
<tr>
<th>Filename</th>
<th>Config. type</th>
<th>Simulation type</th>
<th>Resol. Dependent?</th>
<th>Other Dependencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>finidat</td>
<td>ALL</td>
<td>RUN_TYPE=&quot;startup&quot;, CLM_FORCE_COLDSTART=&quot;off&quot;</td>
<td>Yes</td>
<td>mask, maxpft, bgc, simulation-year, start-date</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Used for starting the model from a spun-up state. Create these files by running the model for multiple years and saving the restart file from the end of a spin-up simulation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fglcmask</td>
<td>glc_nec &gt; 0</td>
<td>Used for simulations with the active glacier ice sheet model &quot;cism&quot;</td>
<td>Yes</td>
<td>glacier-grid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Needs to match the file used by &quot;cism&quot; and be for the same glacier grid. Only customized as coupled with the glacier model.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stream_fldf_filename_ndep</td>
<td>bgc=cn/cndv</td>
<td>Yes</td>
<td>No</td>
<td>simulation-year</td>
</tr>
<tr>
<td></td>
<td></td>
<td>You may customize this file to get the Nitrogen deposition characteristics of your site if available. This file will be interpolated while the model is running from it's resolution to the resolution that CLM is running at.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 4. How to run some special cases

In this chapter we describe how to run some special cases that take more than one step to do. The straightforward cases have compsets and/or build-namelist use-cases setup for them or require simple editing of a single-case. All of the cases here require you to do at least two simulations with different configurations, or require more complex editing of the case (changing the streams files).

The nine cases we will describe are:

1. Running with the prognostic crop model on
2. Running with the irrigation model on
3. Spinning up the Satellite Phenology Model (CLMSP spinup)
4. Spinning up the biogeochemistry Carbon-Nitrogen Model (CN spinup)
5. Spinning up the Carbon-Nitrogen Dynamic Global Vegetation Model (CNDV spinup)
6. Running with MOAR data as atmospheric forcing to spinup the model
7. Running with your own previous simulation as atmospheric forcing to spinup the model
8. Doing perturbation error growth tests
9. Running stand-alone CLM with transient historical CO₂ concentration

Caution
The cases in this chapter are more sophisticated and require more technical knowledge and skill than cases in previous chapters. The user should be very familiar with doing simple cases before moving onto the cases described here.

Running with the prognostic crop model on

In CLM4 in CESM1.0.3 a prognostic crop model was added to CLM4. The prognostic crop model is setup to work with CN for present day conditions and we have surface and initial condition datasets at f19 resolution. In order to use the initial condition file, we need to set the RUN_TYPE to startup rather than hybrid since the compset for f19 sets up to use an initial condition file without crop active. To activate the crop model we simply add "-crop on" to CLM_CONFIG_OPTS.

Example 4-1. Example Crop Simulation

```
> cd scripts
> ./create_newcase -case CROP -res f19_g16 -compset ICN -mach bluefire
> cd CROP

Append "-crop on" to CLM_CONFIG_OPTS in env_conf.xml (you could also use an editor)
> ./xmlchange -file env_conf.xml -id CLM_CONFIG_OPTS -val "-crop on" -append
Change to startup type so uses spunup initial conditions file for crop if it exists
By default the model will do a hybrid startup with an initial condition file
incompatible with the crop surface dataset.
> ./xmlchange -file env_conf.xml -id RUN_TYPE -val startup
> ./configure -case
```

Now build and run normally.
Chapter 4. How to run some special cases

Running with the irrigation model on

In CLM4 in CESM1.0.3 an irrigation model for generic crop was added to CLM4. Currently, irrigation and crop can NOT be used together see bug number 1326 in the models/lnd/clm/doc/KnownBugs file. The irrigation model is tuned to work only with CLMSP see the caution below for for more information on this. To turn on irrigation we simply add "-irrig on" to CLM_BLDNML_OPTS. Just as in the crop example we also change RUN_TYPE to startup so that we don’t use an initial condition file that is incompatible with irrigation.

Example 4-2. Example Irrigation Simulation

> cd scripts
  # Note here we do a CLMSP simulation as that is what has been validated
> ./create_newcase -case IRRIG -res f19_g16 -compset I -mach bluefire
> cd IRRIG
  # Append "-irrig on" to CLM_BLDNML_OPTS in env_conf.xml (you could also use an editor)
> ./xmlchange -file env_conf.xml -id CLM_BLDNML_OPTS -val "-irrig" -append
  # Change to startup type so uses spunup initial conditions file for irrigation if it exists
  # By default the model will do a hybrid startup with an initial condition file
  # incompatible with the irrigation surface dataset.
> xmlchange -file env_conf.xml -id RUN_TYPE -val startup
> ./configure -case
  # Now build and run normally
> ./IRRIG.bluefire.build
> ./IRRIG.bluefire.submit

Caution

We have only run the irrigation model with CLMSP (i.e. without the CN model). We recommend that if you want to run the irrigation model with CN, that you do a spinup as outlined in the examples below. But, more than that you may need to make the adjustments we discuss in the Section called Build-Namelist options that should NOT be exercised: in What is scientifically validated and functional in CLM4?.

Spinning up the Satellite Phenology Model (CLMSP spinup)

To spin-up the CLMSP model you merely need to run CLMSP for 50 simulation years starting from arbitrary initial conditions. You then use the final restart file for initial conditions in other simulations. Because, this is a straight forward operation we will NOT give the details on how to do that here, but
Chapter 4. How to run some special cases

leave it as an exercise for the reader. See the Example 4-5 as an example of doing this as the last step for CLMCN.

Spinning up the biogeochemistry Carbon-Nitrogen Model (CN spinup)

To get the CLMCN model to a steady state, you first run it from arbitrary initial conditions using the "accelerated decomposition spinup" (-ad_spinup in configure) mode for 600 simulation years. After this you branch from this mode in the "exit spinup" (-exit_spinup in configure), run for a simulation year, and then save a restart from that and use it as initial conditions for further spinup of CN (at least 50 simulation years).

Spinup of CLMCN

1. AD_SPINUP

For the first step of running 600 years in "-ad_spinup" mode, you will setup a case, and then edit the values in env_conf.xml and env_run.xml so that the right configuration is turned on and the simulation is setup to run for the required length of simulation time. So do the following:

Example 4-3. Example AD_SPINUP Simulation

```bash
> cd scripts
> ./create_newcase -case CN_spinup -res f19_g16 -compset ICN -mach bluefire
> cd CN_spinup
Append "-ad_spinup on" to CLM_CONFIG_OPTS in env_conf.xml
> ./xmlchange -file env_conf.xml -id CLM_CONFIG_OPTS -val "-ad_spinup on" -append
The following sets CLM_FORCE_COLDSTART to "on" in env_conf.xml (you could also use an editor)
> ./xmlchange -file env_conf.xml -id CLM_FORCE_COLDSTART -val on
Make the output history files only annual, by adding the following to the user_nl_clm namelist
> echo '&clm_inparm hist_nhtfrq = -8760 /' > user_nl_clm
Now configure
> ./configure -case
> ./xmlchange -file env_run.xml -id STOP_DATE -val 6010101
Now build
> ./CN_spinup.bluefire.build
The following sets RESUBMIT to 30 times in env_run.xml (you could also use an editor)
> ./xmlchange -file env_run.xml -id RESUBMIT -val 30
The following sets STOP_OPTION to "nyears" in env_run.xml (you could also use an editor)
> ./xmlchange -file env_run.xml -id STOP_OPTION -val nyears
The following sets STOP_N to 20 years in env_run.xml (you could also use an editor)
> ./xmlchange -file env_run.xml -id STOP_N -val 20
The following sets STOP_DATE to Jan/1 of year 601 in env_run.xml (you could also use an editor)
Now run normally
> ./CN_spinup.bluefire.submit
```

Afterwards save the last restart file from this simulation to use in the next step.

2. EXIT_SPINUP

Example 4-4. Example EXIT_SPINUP Simulation

```bash
> cd scripts
> ./create_newcase -case CN_exitspinup -res f19_g16 -compset ICN -mach bluefire
> cd CN_exitspinup
Append "-exit_spinup on" to CLM_CONFIG_OPTS in env_conf.xml
> ./xmlchange -file env_conf.xml -id CLM_CONFIG_OPTS -val "-exit_spinup on" -append
Change run type to branch and branch from the last year of the last simulation
```
Chapter 4. How to run some special cases

> ./xmlchange -file env_conf.xml -id RUN_TYPE -val branch
> ./xmlchange -file env_conf.xml -id RUN_REF_CASE -val CN_spinup
> ./xmlchange -file env_conf.xml -id RUN_REF_DATE -val 0601-01-01
> ./xmlchange -file env_conf.xml -id GET_REF_CASE -val FALSE
> ./configure -case
# Go ahead and build, so that the run directory is created
> ./CN_exitspinup.bluefire.build
# Now, Copy the last restart files from the earlier case into your run directory
> cp /ptmp/$LOGIN/archive/CN_spinup/rest/CN_spinup.*.r*.0601-01-01-00000.* /ptmp/$LOGIN/CN_exitspinup
# And copy the rpointer files for datm and drv from the earlier case
> cp /ptmp/$LOGIN/archive/CN_spinup/rest/rpointer.atm /ptmp/$LOGIN/CN_exitspinup
> cp /ptmp/$LOGIN/archive/CN_spinup/rest/rpointer.drv /ptmp/$LOGIN/CN_exitspinup
# The following sets STOP_OPTION to "nyears" in env_run.xml (you could also use an editor)
> ./xmlchange -file env_run.xml -id STOP_OPTION -val nyears
> ./xmlchange -file env_run.xml -id STOP_N -val 1
# Now run normally
> ./CN_exitspinup.bluefire.submit

3. Final spinup

Next save the last restart file from this step and use it as the "finidat" file to use for one more spinup for at least 50 years in normal mode. So do the following:

Example 4-5. Example Final CN Spinup Simulation

> cd scripts
> /create_newcase -case CN_finalspinup -res f19_g16 -compset ICN -mach bluefire
> cd CN_finalspinup
# The following sets CLM_FORCE_COLDSTART to "on" in env_conf.xml (you could also use an editor)
> ./xmlchange -file env_conf.xml -id CLM_FORCE_COLDSTART -val on
# Now, Copy the last CLM restart file from the earlier case into your run directory
> cp /ptmp/$LOGIN/archive/CN_exitspinup/rest/CN_exitspinup.clm*.r*.0602-01-01-00000.nc /ptmp/$LOGIN/CN_finalspinup
# And copy the rpointer files for datm and drv from the earlier case
> cp /ptmp/$LOGIN/archive/CN_exitspinup/rest/rpointer.atm /ptmp/$LOGIN/CN_finalspinup
> cp /ptmp/$LOGIN/archive/CN_exitspinup/rest/rpointer.drv /ptmp/$LOGIN/CN_finalspinup
# Set the finidat file to the last restart file saved in previous step
> echo ' &clm_inparm finidat = "CN_exitspinup.clm2.r.0602-01-01-00000.nc" ' > user_nl_clm
# Now configure
> ./configure -case
> $EDITOR Buildconf/clm.buildnml.csh
> Now build
> ./CN_finalspinup.bluefire.build
# The following sets SUBMIT to 5 times in env_run.xml (you could also use an editor)
> ./xmlchange -file env_run.xml -id RESUBMIT -val 5
# The following sets STOP_OPTION to "nyears" in env_run.xml (you could also use an editor)
> ./xmlchange -file env_run.xml -id STOP_OPTION -val nyears
# The following sets STOP_N to 10 years in env_run.xml (you could also use an editor)
> ./xmlchange -file env_run.xml -id STOP_N -val 10
# Now run normally
> ./CN_finalspinup.bluefire.submit

To assess if the model is spunup plot trends of CN variables of interest. If you see a trend, you may need to run the simulation longer. Finally save the restart file from the end of this simulation to use as an "finidat" file for future simulations.
Chapter 4. How to run some special cases

Spinning up the Carbon-Nitrogen Dynamic Global Vegetation Model (CNDV spinup)

To spinup the CLM CNDV model -- you first follow the procedures above to spinup the CN model. Then you take the CN initial state file you created for the spinup with just CN, and run CNDV for 200 more years. We’ve provided such spinup files for two resolutions (f09 and f19) and two time-periods (1850 and 2000), so in this example we will use the files provided to start from. We’ve also provided a spinup file at f19 resolution for CNDV, hence the following is NOT required when running at f19. If you were to start from your own CLMCN spinup files -- the procedure would require some modification. There are no compsets using CNDV, so in env_conf.xml change CLM_CONFIG_OPTS to -bgc cndv.

Example 4-6. Example CNDV Spinup Simulation

```shell
> cd scripts
> ./create_newcase -case CNDV_spinup -res f09_g16 -compset ICN -mach bluefire
> cd CNDV_spinup
Set run type to startup and do a cold start
> ./xmlchange -file env_conf.xml -id RUN_TYPE -val startup
The following sets CLM_CONFIG_OPTS to "-bgc cndv" in env_conf.xml (you could also use an editor)
> ./xmlchange -file env_conf.xml -id CLM_CONFIG_OPTS -val "-bgc cndv"
Make the default primary history file annual and add an annual 1D vector auxiliary file
By putting the following in a user_nl_clm file.
> cat << EOF > user_nl_clm
&clm_inparm
 hist_nhtfrq = -8760, -8760
 hist_mfilt = 1, 1
 hist_finct = 'TLAI', 'TSAI', 'HTOP', 'HBOT', 'NPP'
 hist_dov2xy = .true., .false.
/
> ./configure -case
NOTE: If you were using your own CN spinup files you would edit the namelist to use it
$EDITOR Buildconf/clm.buildnml.csh
Now build and run as normal
> ./CNDV_spinup.bluefire.build
The following sets RESUBMIT to 10 times in env_run.xml (you could also use an editor)
> ./xmlchange -file env_run.xml -id RESUBMIT -val 10
The following sets STOP_OPTION to "nyears" in env_run.xml (you could also use an editor)
> ./xmlchange -file env_run.xml -id STOP_OPTION -val nyears
The following sets STOP_N to 20 years in env_run.xml (you could also use an editor)
> ./xmlchange -file env_run.xml -id STOP_N -val 20
Make sure you turn archiving on, so you save your files to long term archival
> ./xmlchange -file env_run.xml -id DOUT_L_MS -val TRUE
> ./CNDV_spinup.bluefire.submit
```

In a data analysis tool you should examine the auxiliary file and examine the pfts1d_wtgcell to see where and what types of vegetation have been established. See the caution in Example 1-7 for more information on visualizing and analyzing 1D vector fields.

**Note**: CNDV also writes out two vector fields to "hv" auxiliary files, on an annual basis by default.

**Note**: We’ve provided a spinup file for CNDV at f19 resolution, you could also use interpinic to interpolate this file to other resolutions.
Chapter 4. How to run some special cases

Running with MOAR data as atmospheric forcing to spinup the model

Because it takes so long to spinup the CN model (as we just saw previously), if you are doing fully coupled simulations with active atmosphere and ocean, you will want to do the spinup portion of this "offline". So instead of doing expensive fully coupled simulations for the spinup duration, you run CLM in a very cheap "I" compset using atmospheric forcing from a shorter fully coupled simulation (or a simulation run previously by someone else).

In this example we will use the I1850SPINUPCN compset to setup CLM to run with atmospheric forcing from a previous fully coupled simulation with data that is already stored on disk on bluefire. There are several simulations that have high frequency data for which we can do this. You can also do this on a machine other than bluefire, but would need to download the data from the Earth System Grid and change the datapath similar to Example 4-9.

Example 4-7. Example Simulation with MOAR Data on bluefire

> cd scripts
> ./create_newcase -case MOARforce1850 -res f19_g16 -compset I1850SPINUPCN -mach bluefire
> cd MOARforce1850
# The following sets the casename to point to for atm forcing (you could also use an editor)
> ./xmlchange -file env_conf.xml -id DATM_CPL_CASE -val b40.1850.track1.1deg.006a
# The following sets the align year and years to run over for atm forcing
# (you could also use an editor)
> ./xmlchange -file env_conf.xml -id DATM_CPL_YR_ALIGN -val 1
> ./xmlchange -file env_conf.xml -id DATM_CPL_YR_START -val 960
> ./xmlchange -file env_conf.xml -id DATM_CPL_YR_END -val 1030
> ./configure -case
# Now build and run as normal
> ./MOARforce1850.bluefire.build
> ./MOARforce1850.bluefire.submit

Caution

Because of bug 1339 (see the models/lnd/clm/doc/KnownBugs (../KnownBugs) file on this) you can't run with 83 or more years of forcing. If you do need to run with more years of forcing, you'll need to address the issue as outlined in the models/lnd/clm/doc/KnownBugs (../KnownBugs) file.

Running with your own previous simulation as atmospheric forcing to spinup the model

Another way that you might want to spinup the model is to run your own simulation for a relatively short period (either a B, E, or F compset) and then use it as forcing for your "I" case later. By only running 20 to 50 years for the fully coupled case, you'll save a substantial amount of computer time rather than running the entire spinup period with a fully coupled model.
Chapter 4. How to run some special cases

The first thing we need to do is to run a fully coupled case and save the atmospheric coupling fields on a three hourly basis. In this example, we will run on bluefire and archive the data to a local disk that we can then use in the next simulation.

Example 4-8. Example Fully Coupled Simulation to Create Data to Force Next Example Simulation

```bash
> cd scripts
> ./create_newcase -case myBCN1850 -res f09_g16 -compset B1850CN -mach bluefire
> cd myBCN1850
> ./configure -case
Set histaux_a2x3hr to .true. in cpl.buildnml.csh so output from the atmosphere model
will be saved 3 hourly
$EDITOR BuildConf/cpl.buildnml.csh
Now build
> ./myBCN1850.bluefire.build
The following sets the archival disk space (you could also use an editor)
> ./xmlchange -file env_run.xml -id DOUT_S_ROOT -val '/glade/home/$USER/$CASE'
Make sure files are archived to disk, but NOT to long term storage
(you could also use an editor)
> ./xmlchange -file env_run.xml -id DOUT_S -val TRUE
> ./xmlchange -file env_run.xml -id DOUT_L_MS -val FALSE
Set the run length to run a total of 20 years (you could also use an editor)
> ./xmlchange -file env_run.xml -id RESUBMIT -val 9
> ./xmlchange -file env_run.xml -id STOP_OPTION -val nyears
> ./xmlchange -file env_run.xml -id STOP_N -val 2
Now run as normal
> ./myBCN1850.bluefire.submit
```

Now we run an I compset forced with the data from the previous simulation using the CPLHIST3HrWx option to DATM_MODE. See the Section called CPLHIST3HrWx mode and it’s DATM settings in Chapter 1 for more information on the DATM settings for CPLHIST3HrWx mode.

Example 4-9. Example Simulation Forced with Data from the Previous Simulation

```bash
> cd scripts
> ./create_newcase -case frcwmyBCN1850 -res f09_g16 -compset I1850SPINUPCN -mach bluefire
> cd frcwmyBCN1850
The following sets the casename to point to for atm forcing (you could also use an editor)
> ./xmlchange -file env_conf.xml -id DATM_CPL_CASE -val "myBCN1850"
The following sets the align year and years to run over for atm forcing
(you could also use an editor)
> ./xmlchange -file env_conf.xml -id DATM_CPL_YR_ALIGN -val "1"
> ./xmlchange -file env_conf.xml -id DATM_CPL_YR_START -val "1"
> ./xmlchange -file env_conf.xml -id DATM_CPL_YR_END -val "20"
Set the datapath in the template to the archival path from the case above
> sed -E 's#set datapath = ".*"#set datapath = "\nTools/templates/datm.cpl7.template > new.datm.cpl7.template
> mv -f new.datm.cpl7.template Tools/templates/datm.cpl7.template
> chmod +x Tools/templates/datm.cpl7.template
> ./configure -case
Now build and run as normal
> ./frcwmyBCN1850.bluefire.build
> ./frcwmyBCN1850.bluefire.submit
```

Note: In order to accomplish this we needed to edit the DATM template file. See Appendix A for more information on doing this. If your input case was at a resolution besides f09 you would have to edit the DATM template file even further to use a domain file at the input resolution.
Doing perturbation error growth tests

Doing perturbation error growth tests is a way to validate a port of the model to a new machine or to verify that changes are only roundoff. The steps are the same in either case, but in the discussion below I will assume you are doing a port validation to a new machine (but in parentheses I will put a reminder that it could also be for code-mods). The basic idea is to run a case on the trusted machine (trusted code) and another with initial conditions perturbed by roundoff and compare the results of the two. The difference between these two simulations (the error) will grow over time and describe a curve that we compare with the error growth on the new machine (code changes). The error growth on the new machine is the difference between the non-perturbed state on the trusted machine and the non-perturbed state on the new machine (code changes). If the new machine (code changes) are well-behaved the plot of this error growth compared to the error growth curve on the trusted machine should be similar. If the changes are NOT well-behaved the changes from the new machine (code changes) will be larger than the perturbation changes. In summary the simulations and steps that need to be performed are:

1. Run a simulation with the trusted code on the trusted machine. (optionally you can use a dataset from inputdata repository).
2. Run a simulation with the trusted code on the trusted machine with initial conditions perturbed by roundoff (using a namelist item to do so). (this is optional is you are using inputdata repository datasets)
3. Run a simulation with the new code on the non-trusted machine (code changes).
4. Do a plot of the RMS difference of history variables between simulation 1 and simulation 2.
5. Do a plot of the RMS difference of history variables between simulation 1 and simulation 3.
6. Compare the two plots in steps 4 and 5.
7. If the plots compare well the new machine (code changes) is running as well as the trusted machine.
8. If the plots do NOT compare well the new machine is NOT running as well as the trusted machine. Typically the recommendation here is to lower the optimization level on the new machine and try again (or in the case of code changes, modify or simplify the code changes to get something that should be closer).

The history variables we have used to do this is either 'TSOI', and/or 'TSA'. 'TSOI' are the 3D snow and soil temperatures for vegetated land-units. If there is a change in soil physics it should show up in this field (and it should show up even for something that is at a pretty deep soil depth). However, as 'TSOI' is only for vegetated land-units, changes in lake or urban land-units -- will NOT show up. 'TSA' by contrast is the 2m surface temperature across all land-units, so changes in urban or lake land-units will show up. However, changes in deep soil physics will only show up as it propagates to the surface. So one field may show something that the other doesn't. In the examples, we use 'TSOI', but 'TSA' can be used as well. And in most cases you should check both.

Now we will give a detailed description of the procedure with examples and the exact steps to perform.
Chapter 4. How to run some special cases

Using Perturbation Error Growth Analysis to Verify a Port to a New Machine

1. Running non-perturbed on trusted machine

The first step is to run a non-perturbed case on the trusted machine. You need to run all of the steps with the same compset and same resolution. For these examples we will use 2-degree resolution with the ICN compset for 2000 conditions. You need to run for three days with a cold-start.

Note: As we describe below, this is optional if you will be using datasets from the inputdata repository to take place of this step.

Example 4-10. Example non-perturbed error growth simulation

```
> cd scripts
> ./create_newcase -case trustedMachinePergro0 -compset ICN -res f19_g16 \
> -mach bluefire
> cd trustedMachinePergro0
Set the non-perturbed PERGRO use-case
> ./xmlchange -file env_conf.xml -id CLM_NML_USE_CASE -val pergro0_pd
Set coldstart on so arbitrary initial conditions will be used
> ./xmlchange -file env_conf.xml -id CLM_FORCE_COLDSTART -val on
> ./xmlchange -file env_conf.xml -id RUN_TYPE -val startup
Set PERGRO on in the configure
> ./xmlchange -file env_conf.xml -id CLM_CONFIG_OPTS -val "-pergro on" -append
Now configure and build
> ./configure -case
> ./trustedMachinePergro0.bluefire.build
Set it to run for three days and turn archiving off
> ./xmlchange -file env_run.xml -id STOP_N -val 3
> ./xmlchange -file env_run.xml -id DOUT_S -val FALSE
Run the case and then you will save the history file output for later use
> ./trustedMachinePergro0.bluefire.submit
```

Note: If you aren’t able to do this step, as you don’t have access to a trusted machine, you can use datasets that are available from the svn inputdata repository to take place of running it yourself. The disadvantage is that this is only done for certain model versions and for exactly the configuration/namelist given here. You won’t be able to test it for your own custom code or configurations.

2. Running perturbed on the trusted machine

The next step is to run a perturbed case on the trusted machine.

Example 4-11. Example perturbed error growth simulation

```
> cd scripts
> ./create_newcase -case trustedMachinePergroRnd -compset ICN -res f19_g16 \
> -mach bluefire
> cd trustedMachinePergroRnd
Set the perturbed PERGRO use-case
> ./xmlchange -file env_conf.xml -id CLM_NML_USE_CASE -val pergro_pd
Set coldstart on so arbitrary initial conditions will be used
> ./xmlchange -file env_conf.xml -id CLM_FORCE_COLDSTART -val on
> ./xmlchange -file env_conf.xml -id RUN_TYPE -val startup
Set PERGRO on in the configure
> ./xmlchange -file env_conf.xml -id CLM_CONFIG_OPTS -val "-pergro on" -append
```
Chapter 4. How to run some special cases

# How configure and build
> ./configure -case
> ./trustedMachinePergroRnd.bluefire.build
# Set it to run for three days and turn archiving off
> ./xmlchange -file env_run.xml -id STOP_N -val 3
> ./xmlchange -file env_run.xml -id DOUT_S -val FALSE
# Run the case and then you will save the history file output for later use
> ./trustedMachinePergroRnd.bluefire.submit

Note: If you aren’t able to do this step, as you don’t have access to a trusted machine, you can use datasets that are available from the svn inputdata repository to take place of running it yourself. The disadvantage is that this is only done for certain model versions and for exactly the configuration/namelist given here. You won’t be able to test it for your own custom code or configurations.

3. Running non-perturbed on the new machine

The next step is to run a non-perturbed case on the new machine. Here we will demonstrate using the machine intrepid. For the previous two steps you have the option of using datasets provided in the subversion inputdata repository to take their place -- however this step is required.

> cd scripts
> ./create_newcase -case newMachinePergro0 -compset ICN -res f19_g16 \
-mach intrepid
> cd newMachinePergro0
# Set the non-perturbed PERGRO use-case
> ./xmlchange -file env_conf.xml -id CLM_NML_USE_CASE -val pergro0_pd
> ./xmlchange -file env_conf.xml -id CLM_FORCE_COLDSTART -val on
> ./xmlchange -file env_conf.xml -id RUN_TYPE -val startup
# Set PERGRO on in the configure
> ./xmlchange -file env_conf.xml -id CLM_CONFIG_OPTS -val "-pergro on" -append
# Now configure and build
> ./configure -case
> ./newMachinePergro0.intrepid.build
# Set it to run for three days and turn archiving off
> ./xmlchange -file env_run.xml -id STOP_N -val 3
> ./xmlchange -file env_run.xml -id DOUT_S -val FALSE
# Run the case and then you will save the history file output for later use
> ./newMachinePergro0.intrepid.submit

4. Plotting the differences

You can use the cprnc program to compute root mean square differences between the relevant history files. See the Section called Using the cprnc tool to compare two history files in Chapter 2 for more information on it and how to build it. On many platforms you will need to set some environment variables in order to complete the build (see the Section called Common environment variables and options used in building the FORTRAN tools in Chapter 2 for more information on building the tools).

# Build the cprnc program
> cd models/lnd/clm/tools/cprnc
> gmake
# Now go to your case directory and run cprnc on the trusted-machine with and without
# perturbation
> cd ../../../scripts/trustedMachinePergro
> ../../../models/lnd/clm/tools/cprnc/cprnc trustedMachinePergro0.clm2.h0.001-01-01.00000.nc \ 
..trustedMachinePergroRnd.trustedMachinePergroRnd.clm2.h0.001-01-01.00000.nc > trustedPergro.log
# Copy the history file from the new machine to here
# # And now run cprnc on the trusted-machine and the new machine both without perturbation
> ../../../models/lnd/clm/tools/cprnc/cprnc trustedMachinePergro0.clm2.h0.001-01-01.00000.nc \ 
..newMachinePergro0/newMachinePergro0.clm2.h0.001-01-01.00000.nc > newPergro.log
Chapter 4. How to run some special cases

# How extract out the RMS differences of TSOI for both
# You may want to extract out the RMS differences for TSA as well
# Changes in urban or lake land-units won’t be detected with TSOI
> grep "RMS TSOI" trustedPergro.log | awk '{print $3}' > RMStrusted.dat
> grep "RMS TSOI" newPergro.log | awk '{print $3}' > RMSnewmachine.dat
# And plot the two curves up to your screen
> env TYPE=x11 RMSDAT=RMSnewmachine.dat RMSDAT2=RMStrusted.dat ncl 
  ../../models/lnd/clm/tools/ncl_scripts/pergroPlot.ncl

Here is a sample plot for several trusted machines: bluefire, intrepid, jaguar, and edinburgh (with both the lahey and intel compilers). The green line is the error growth for bluefire, the red is the error growth for intrepid, the dashed navy is for jaguar, the dashed maroon is for the intel compiler on edinburgh, and the thick dashed goldenrod line is for edinburgh with the lahey compiler. Note, the data for this plot is in models/lnd/clm/tools/ncl_scripts the files are named: according to the legend. Note, that the lines tend to cluster together and follow quite closely to the bluefire line which is our main trusted machine.
When you do NOT have access to a trusted machine you can use the trusted file from bluefire that is available on the inputdata repository.

```
Build the cprnc program
> cd models/lnd/clm/tools/cprnc
> gmake

Get the unperturbed file from the subversion repository
> cd ../../../scripts/newMachinePergro0
> set dir = "lnd/clm2/pergrodata"
> set file = bluefirePergro0.ICN.0001-01-01_1.9x2.5_gx1v6_simyr2000_clm4-csmml_0_3.c110617.nc
```
> echo "trustedfile = DIN_LOC_ROOT/$dir/$file" > clm.input_data_list
> ../ccsm_utils/Tools/check_input_data -datalistdir . -export -inputdata $DIN_LOC_ROOT
# And now run cprnc on the bluefire file and the new machine both without perturbation
> ../../models/lnd/clm/tools/cprnc/cprnc $file
  ../newMachinePergro0/newMachinePergro0.clm2.h0.001-01-01.00000.nc > newPergro.log
# Now extract out the RMS difference
# You may want to extract out the RMS differences for TSA as well
# Changes in urban or lake land-units won't be detected with TSOI
> grep "RMS TSOI" newPergro.log | awk '{print $3}' > RMSnewmachine.dat
# And plot the new curve versus the trusted curve up to your screen
> env TYPE=x11 RMSDAT=RMSnewmachine.dat \ RMSDAT2=../../models/lnd/clm/tools/ncl_scripts/RMSbluefire.dat \ "../models/lnd/clm/tools/ncl_scripts/pergroPlot.ncl"

In the figure below we now show example of curves for changes that are larger than roundoff. Once again the green curve is the trusted error growth from bluefire. The other curves are for changes that may be fairly small, but are larger than roundoff. The goldenrod curve is for using the 1850, and the navy is for using the 1999 Nitrogen deposition files rather than for year 2000. The red is for using the 1850 aerosol dataset rather than 2000, and the maroon is for adding the snow combination bug in. The differences in changes that are greater than roundoff is that the curves climb very steeply to the 10^{-6} value and then level off, while the curve for bluefire climbs much more slowly and gradually. The curves also don’t mimic each other in any way, like the trusted machine plots do.
Running stand-alone CLM with transient historical CO$_2$ concentration

In this case you want to run a simulation with stand-alone CLM responding to changes in CO$_2$ for a historical period. For this example, we will start with the "I_1850-2000_CN" compset that has transient:
Chapter 4. How to run some special cases

land-use, Nitrogen and Aerosol deposition already. You could also use another compset if you didn’t want these other features to be transient. In order to get CO$_2$ to be transient we need to edit the DATM template so that we add an extra streams file to describe how CO$_2$ varies over the historical period. You also need a NetCDF datafile that datm can read that gives the variation. You could supply your own file, but we have a standard file that is used by CAM for this and our example will make use of this file.

Note: Most everything here has to do with changing datm rather than CLM to allow this to happen. As such the user that wishes to do this should first become more familiar with datm and read the CESM Data Model User’s Guide (http://www.cesm.ucar.edu/models/cesm1.0/data8) especially as it pertains to the datm. Note, also that in this example we show how to edit the datm "buildnml" file for your case, but you could do something similar by editing the datm template.

Warning

This section documents the process for doing something that is non-standard. There may be errors with the documentation and process, and you may have to do some work before all of this works for you. If that is the case, we recommend that you do further research into understanding the process and the files, as well as understanding the datm and how it works. You may have to read documentation found in the code for datm as well as "csm_share".

The datm has "streams" files that have rough XML-like syntax and specify the location and file to get data from, as well as information on the variable names and the data locations of the grid points. The datm expects specific variable names and the datm "maps" the expected variable names from the file to the names expected by datm. The file we are working with here is a file with a single-point, that covers the entire globe (so the vertices go from -90 to 90 degrees in latitude and 0 to 360 degrees in longitude). Since it’s a single point it’s a little easier to work with than datasets that may be at a given horizontal resolution. The datm also expects that variables will be in certain units, and only expects a limited number of variables so arbitrary fields can NOT be exchanged this way. However, the process would be similar for datasets that do contain more than one point.

The three things that are needed: a domain file, a data file, and a streams text file. The domain file is a CF-compliant NetCDF file that has information on the grid points (latitudes and longitudes for cell-centers and vertices, mask, fraction, and areas). The datafile is a CF-compliant NetCDF file with the data that will be mapped. The streams text file is the XML-like file that tells datm how to find the files and how to map the variables datm knows about to the variable names on the NetCDF files. Note, that in our case the domain file and the data file are the same file. In other cases, the domain file may be separate from the data file.

First we are going to create a case, and we will edit the Buildconf/datm.buildnml.csh so that we add a CO$_2$ data stream in. There is a streams text file available in models/lnd/clm/doc/UsersGuide/co2_streams.txt, that includes file with a CO$_2$ time-series from 1765 to 2007.

Example 4-12. Example Transient Simulation with Historical CO$_2$

```bash
> cd scripts
> ./create_newcase -case DATM_CO2_TSERIES -res f19_g16 -compset f_1850-2000_CN \
> -mach bluefire
```

113
Chapter 4. How to run some special cases

> cd DATM_CO2_TSERIES
# Set CCSM_BGC to CO2A so that CO2 will be passed from atmosphere to land
> ./xmlchange -file env_conf.xml -id CCSM_BGC -val CO2A
# Set CLM_CO2_TYPE to diagnostic so that the land will use the value sent from the atmosphere
> ./xmlchange -file env_conf.xml -id CLM_CO2_TYPE -val diagnostic
> ./configure -case
> cd Buildconf
# Copy the sample streams file over

The first thing we will do is to edit the datm buildnml script to add a CO2 file stream in. To do this we will apply a patch with the differences needed. The patch file addco2_datm.buildnml.diff is in models/lnd/clm/doc/UsersGuide and looks like this...

```bash
*** datm.buildnml.csh.orig 2010-06-11 10:59:29.246523532 -0600
--- datm.buildnml.csh 2010-06-11 11:06:30.710784206 -0600

*** 34,48 ****
 'clm_qian.T62.stream.TPQW.txt 1895 1948 1972 ',
 'presaero.stream.txt 1849 1849 2006'
 v !
ectors = 'null'
mapmask = 'nomask',
 'nomask',
 'nomask',
 'nomask'
tintalgo = 'coszen',
 'nearest',
 'linear',
 'linear'
/
EOF1
--- 34,56 ----
 'clm_qian.T62.stream.TPQW.txt 1895 1948 1972 ',
 'datm.globalval.stream.CO2.txt 1766 1766 2005 '
 !
 v !ectors = 'null'
mapmask = 'nomask',
 'nomask',
 'nomask',
 'nomask',
 + 'nomask'
 + mapalgo = 'bilinear',
 + 'bilinear',
 + 'bilinear',
 + 'bilinear',
 + 'nn'
tintalgo = 'coszen',
 'nearest',
 'linear',
 + 'linear',
 + 'linear'
/
EOF1

*** 1112,1121 ****
--- 1120,1132 ----
</streamstemplate>
EOF1

+ cp $CASEBUILD/co2_streams.txt datm.globalval.stream.CO2.txt
+
$CASETOOLS/listfilesin_streams -input_data_list -t clm_qian.T62.stream.Solar.txt >> $CASEBUILD/datm.input_data_list
$CASETOOLS/listfilesin_streams -input_data_list -t clm_qian.T62.stream.Precip.txt >> $CASEBUILD/datm.input_data_list
$CASETOOLS/listfilesin_streams -input_data_list -t clm_qian.T62.stream.TPQW.txt >> $CASEBUILD/datm.input_data_list
+ $CASETOOLS/listfilesin_streams -input_data_list -t datm.globalval.stream.CO2.txt >> $CASEBUILD/datm.input_data_list

cat >! pressaero.stream.txt << EOF1

```

114
So to apply the patch you do this...

```bash
> cd scripts/DATM_CO2_TSERIES/Buildconf
> patch < ../../../models/lnd/clm/doc/UsersGuide/addco2_datm.buildnml.diff
```

Once, you’ve done that you can build and run your case normally.

**Warning**

The patch assumes you are using a 1_1850-2000_CN compset out of the box, with DATM_PRESAERO equal to trans_1850-2000. So it assumes standard Qian atmosphere forcing, and transient prescribed aerosols from streams files. If your case changes anything here the patch will fail, and you will need to put the changes in by hand.

**Note:** If the patch fails, you will have to add the changes to the datm.buildnml.csh found in the above patch file by hand. Basically, it adds an extra streams file for CO$_2$ to the end of the streams variable, and other arrays associated with streams (adding mapalgo as a new array with bilinear for everything, but the CO$_2$ file which should be “nn” for nearest neighbor).

**Warning**

The streams file above is hard-coded for the path of the file on NCAR computers. To use it on an outside machine you’ll need to edit the filepath in the streams file to point to the location where you have the file.

After going through these steps, you will have a case where you have datm reading in an extra streams text file that points to a data file with CO$_2$ data on it that will send that data to the CLM.
Chapter 5. How to run Single-Point/Regional cases

The CLM also allows you to set up and run cases with a single-point or a local region as well as global resolutions. This is often useful for running quick cases for testing, evaluating specific vegetation types, or land-units, or running with observed data for a specific site. There are four different ways to do this: PTS_MODE, CLM_PT1_NAME, CLM_USRDAT_NAME, and with PTCLM.

PTS_MODE -- to run for a single point using global datasets.
CLM_PT1_NAME -- to run for a supported single-point or regional dataset.
CLM_USRDAT_NAME -- to run using your own datasets (single-point or regional).
PTCLM -- to easily setup simulations to run for tower sites.

Note: PTS_MODE and PTCLM only work for a single point, while the other two options can also work for regional datasets as well.

Which Single Point Option Should I choose?

In general the Section called Running PTS_MODE configurations is the quick and dirty method that gets you started without having to create datasets -- but has limitations. It’s good for an initial attempt at seeing results for a point of interest, but since you can NOT restart with it, it’s usage is limited. It is the quickest method as you can create a case for it directly from create_newcase. Although you can’t restart, running a single point is very fast, and you can run for long simulation times even without restarts. If you need restarts a good solution is to use getregional_datasets.pl and CLM_USRDAT_NAME which can get you running almost as quickly as well as PTS_MODE. Like PTS_MODE the Section called Using getregional_datasets.pl to get a complete suite of single-point/regional surface datasets from global ones only runs for points that exist within a global dataset.

Running CLM_PT1_NAME is a great solution, if one of the supported single-point/regional datasets, is your region of interest (see the Section called Running Supported Single-point/Regional Datasets). All the datasets are created for you, and you can easily select one and run, pretty much, out of the box with it. The problem is that there is a very limited set of supported datasets. You can also use this method for your own datasets, but you have to create the datasets, and add them to the XML database and to the DATM. This is worthwhile if you want to repeat many multiple cases for a given point or region.

Next, CLM_USRDAT_NAME is the best way to setup cases quickly where you have to create your own datasets (see the Section called Creating your own single-point/regional surface datasets). With this method you don’t have to change DATM or add files to the XML database -- but you have to follow a strict naming convention for files. However, once the files are named and in the proper location, you can easily setup new cases that use these datasets. This is good for treating all the required datasets as a "group" and for a particular model version. For advanced CLM developers who need to track dataset changes with different model versions you would be best off adding these datasets as supported datasets with the CLM_PT1_NAME method.
Chapter 5. How to run Single-Point/Regional cases

Lastly PTCLM is a great way to easily create datasets, setup simulations and run simulations for tower sites. It takes advantage of both CLM_PT1_NAME and CLM_USRDAT_NAME internally. A big advantage to it, is that it’s one-stop shopping, it runs tools to create datasets, and runs create_newcase and sets the appropriate env variables for you. So you only have to learn how to run one tool, rather than work with many different ones. PTCLM is described in the next chapter Chapter 6.

Finally, if you also have meteorology data that you want to force your CLM simulations with you’ll need to setup cases as described in the Section called Running with your own atmosphere forcing. You’ll need to create CLM datasets either according to CLM_PT1_NAME or CLM_USRDAT_NAME, but you’ll also need to modify DATM to use your forcing data. And you’ll need to change your forcing data to be in a format that DATM can use. In the PTCLM chapter the the Section called Converting AmeriFlux Data for use by PTCLM in Chapter 6 section tells you how to use AmeriFlux data for atmospheric forcing.

Running PTS_MODE configurations

PTS_MODE enables you to run the model using global datasets, but just picking a single point from those datasets and operating on it. It can be a very quick way to do fast simulations and get a quick turnaround.

To setup a PTS_MODE simulation you use the "-pts_lat" and "-pts_lon" arguments to create_newcase to give the latitude and longitude of the point you want to simulate for (the code will pick the point on the global grid nearest to the point you give. Here’s an example to setup a simulation for the nearest point at 2-degree resolution to Boulder Colorado.

```
> cd scripts
> ./create_newcase -case testPTS_MODE -res f19_g16 -compset I -mach bluefire \
-pts_lat 40.0 -pts_lon -105
> cd testPTS_MODE
We make sure the model will start up cold rather than using initial conditions
> ./xmlchange -file env_conf.xml -id CLM_FORCE_COLDSTART -val on
> ./xmlchange -file env_conf.xml -id RUN_TYPE -val startup
```

Then configure, build and run as normal. We make sure initial conditions are NOT used since PTS_MODE currently CAN NOT run with initial conditions.

**Important:** By default it sets up to run with USE_MPISERIAL (in the env_build.xml file) turned on, which allows you to run the model interactively. On some machines this mode is NOT supported and you may need to change it to FALSE before you are able to build.

**Warning**

PTS_MODE currently does NOT restart nor is it able to startup from global initial condition files. See bugs "1017 and 1025" in the models/lnd/clm/doc/KnownLimitations (../KnownLimitations) file.

**Note:** You can change the point you are simulating for at run-time by changing the values of PTS_LAT and PTS_LON in the env_run.xml file.
Note: Note, that when running with PTS_MODE the number of processors is automatically set to one. When running a single grid point you can only use a single processor. You might also want to set the "env_conf" variable: USE_MPSERIAL to true so that you can also run interactively without having to use MPI to start up your job.

Warning about Running with a Single-Processor on a Batch Machine

This problem always comes up when running for a single point, because you can only use a single-processor, but may come up in other instances when you are running with one processor. This applies to all the different ways of running in single-point mode.

Warning

A warning for submitting single-point simulations to the batch que when only using one processor. On many machines this will mean using up at least an entire node, and being charged for all the CPU's on that node even if you aren't using them. For example, on the NCAR machine bluefire, there are 32 processors for each node and the batch scripts are setup to have exclusive use of that node (and hence be charged for all 32 processors). There are similar issues on other machines, below we show you what to do when running on bluefire.

To change this on bluefire -- change the following:

```
#BSUB -q regular
#BSUB -N
#BSUB -x
```

to...

```
#BSUB -q share
#BSUB -N
```

so remove the "#BSUB -x" which gives you the entire node exclusively, and change to the share que. One other machines you may have to do something similar, but the particulars depend on the given machine, hence you will need to consult with the system administrators for the given machine you are running on.

Note: Another similar problem on many machines is that some batch ques have a minimum number of nodes or processors that can be used. On these machine you may have to change the queue (in some way similar to the above for bluefire) and possibly the time-limits of the job, to get it to run in the batch que.
Another way to get around this problem is to run the job interactively using USE_MPI_SERIAL so that you don’t submit the job to the batch queue. For single point mode you also may want to consider using a smaller workstation or cluster, rather than a super-computer, because you can’t take advantage of the multi-processing power of the super-computer anyway.

### Running Supported Single-point/Regional Datasets

In addition to PTS_MODE the CLM supports running using single-point or regional datasets that are customized to a particular region. In the section below we tell the user how to create their own dataset, but we also support a small number of single-point and regional datasets that are ready to setup and run in the CESM modeling system.

To get the list of supported dataset resolutions see the method given in the section on use of CLM_PT1_NAME, which results in the following:

```bash
build-namelist - valid values for res (Horizontal resolutions
Note: 0.5x0.5 and 0.33x0.33 are only used for CLM tools):
Values: default 1.9x2.5 1.9x2.5 2.5x3.33 4x5 10x15 5x5_amazon 1x1_tropicAt1 1x1_camdenNJJ \ 1x1_vancouverCAN 1x1_mexicocityMEX 1x1_asphalt_jungleWJ 1x1_brazil 1x1_urban_w_alpha 1x1_numAI \ 1x1_smallvilleIA 0.5x0.5 0.33x0.33
Default = 1.9x2.5
(NOTE: resolution and mask and other settings may influence what the default is)
```

The resolution names that have an underscore in them ("_*") are all single-point or regional resolutions. To run with the supported single-point and regional datasets, you setup a simulation for the "pt1_pt1" resolution and give the short-name for the file to use in the env_conf.xml file.

To run for the Brazil test site do the following:

**Example 5-1. Example of running CLM over a single-point test site in Brazil with the default Qian atmosphere forcing.**

```bash
> cd scripts
> ./create_newcase -case testSPDATASET -res pt1_pt1 -compset I \ -mach bluefire
> cd testSPDATASET
Configure to run for the test site
> set SITE=1x1_brazil
> ./xmlchange -file env_conf.xml -id CLM_CONFIG_OPTS -val "-sitespf_pt $SITE"
> ./xmlchange -file env_conf.xml -id CLM_PT1_NAME -val $SITE
```

Then configure, build and run normally.

Then to run for the urban Mexico City Mexico test site that also has atmosphere forcing data, but to run it with the Qian forcing data, but over the period for which it’s own forcing data is provided do the following:
Example 5-2. Example of running CLM over the single-point of Mexicocity Mexico with the default Qian atmosphere data forcing.

```bash
> cd scripts
> ./create_newcase -case testSPDATASET -res pt1_pt1 -compset I -mach bluefire
> cd testSPDATASET

Set a variable to the site you want to use (as it’s used several times below)
> set SITE=1x1_mexicocityMEX

Configure to run for the urban test site
> ./xmlchange -file env_conf.xml -id CLM_CONFIG_OPTS -val "-sitespf_pt $SITE"
> ./xmlchange -file env_conf.xml -id CLM_PT1_NAME -val $SITE

Set DATM prescribed aerosols to single-point dataset
Will then use the dataset with just the point for this $SITE
> ./xmlchange -file env_conf.xml -id DATM_PRESAERO -val pt1_pt1

Some of the settings that are particular to this site, by values contained
in the XML database. For some sites, or for new sites this information won’t be
stored. And the queryDefaultNamelist.pl command will abort.
Set DATM start and end range (optional just to run over the same years that
atmospheric forcing data is available for this site)
> ./xmlchange -file env_conf.xml -id DATM_CLMNCEP_YR_START -val "
 ../../../models/lnd/clm/bld/queryDefaultNamelist.pl -res $SITE
 -namelist default_settings -silent -var datm_cycle_beg_year -justvalue"
> ./xmlchange -file env_conf.xml -id DATM_CLMNCEP_YR_END -val "
 ../../../models/lnd/clm/bld/queryDefaultNamelist.pl -res $SITE
 -namelist default_settings -silent -var datm_cycle_end_year -justvalue"
```

Then configure, build and run normally.

**Important:** Just like PTS_MODE above, By default it sets up to run with USE_MPSERIAL (in the `env_build.xml` file) turned on, which allows you to run the model interactively. On some machines this mode is NOT supported and you may need to change it to FALSE before you are able to build.

---

**Warning**

See the Section called **Warning about Running with a Single-Processor on a Batch Machine** for a warning about running single-point jobs on batch machines.

---

**Note:** Note, that when running a `pt1_pt1` resolution the number of processors is automatically set to one. When running a single grid point you can only use a single processor. You might also want to set the "env_conf" variable: USE_MPSERIAL to TRUE so that you can also run interactively without having to use mpi to start up your job.

---

**Running Supported Single-point Datasets that have their own Atmospheric Forcing**

Of the supported single-point datasets we have three that also have atmospheric forcing data that go with them: Mexico City (Mexico), Vancouver, (Canada, British Columbia), and urbanc_alpha (test data for an Urban inter-comparison project). Mexico city and Vancouver also have "#ifdef" in the source code for
them to work with modified urban data parameters that are particular to these locations. They can be
turned on by using the CLM_CONFIG_OPTS env_conf.xml variable to set the "-sitespf_pt" option in
the CLM configure. To turn on the atmospheric forcing for these datasets, you set the env_conf.xml
DATM_MODE variable to "CLM1PT", and then the atmospheric forcing datasets will be used for the
point picked.

When running with datasets that have their own atmospheric forcing you need to be careful to run over
the period that data is available. If you have at least one year of forcing it will cycle over the available
data over and over again no matter how long of a simulation you run. However, if you have less than a
years worth of data (or if the start date doesn’t start at the beginning of the year, or the end date doesn’t
end at the end of the year) then you won’t be able to run over anything but the data extent. In this case
you will need to carefully set the RUN_STARTDATE, START_TOD and STOP_N/STOP_OPTION
variables for your case to run over the entire time extent of your data. For the supported data points, these
values are in the XML database and you can use the queryDefaultNamelist.pl script to query the values
and set them for your case (they are set for the three urban test cases: Mexicocity, Vancouver, and
urbanc_alpha).

In the example below we will show how to do this for the Vancouver, Canada point.

**Example 5-3. Example of running CLM over the single-point of Vancouver Canada with supplied
atmospheric forcing data for Vancouver.**

```
> cd scripts
> # Create a case at the single-point resolutions
> ./create_newcase --case testSPDATASETnAtmForcing --res pt1_pt1 --compset I --mach bluefire
> cd testSPDATASETnAtmForcing
> # Set a variable to the site you want to use (as it’s used several times below)
> set SITE=1x1_vancouverCAN
> # Now set the CLM single-point variable to the site name
> ./xmlchange -file env_conf.xml -id CLM_CONFIG_OPTS -val "-sitespf.pt $SITE"
> ./xmlchange -file env_conf.xml -id CLM_PT1_NAME -val $SITE
> # Set the aerosols to use the single-point dataset for 2000 conditions
> # You could also use the default global dataset, but running would be a bit slower
> ./xmlchange -file env_conf.xml -id DATM_MODE -val CLM1PT
> # Set the coupling frequency to once an hour
> ./xmlchange -file env_conf.xml -id ATM_NCPL -val 24
> # Set the standard namelist options for an urban test site
> ./xmlchange -file env_conf.xml -id ATM_MODE -val 2
> # Set DATM start and end range...
> ./xmlchange -file env_conf.xml -id DATM_CLMNCEP_YR_START -val $DATM_CLMNCEP_YR_START
> ./xmlchange -file env_conf.xml -id DATM_CLMNCEP_YR_END -val $DATM_CLMNCEP_YR_END
```

121
Chapter 5. How to run Single-Point/Regional cases

`./../models/lnd/clm/bld/queryDefaultNamelist.pl -res $SITE \n-namelist default_settings -silent -var datm_cycle_end_year -justvalue`

# Set the User namelist to set the output frequencies of the history files
# The frequencies and number of time-samples needs to be set
> cat << EOF > user_nl_clm
&clm_inparm
    hist_mfilt = $STOP_N,$STOP_N,$STOP_N
    hist_nhtfrq = -1,-1,-1
/
EOF

# Set align year to start year as defined above
> ./xmlchange -file env_conf.xml -id DATM_CLMNCEP_YR_ALIGN -val $START_YEAR

# Set DATM prescribed aerosols to single-point dataset
# Will then use the dataset with just the point for this site
> ./xmlchange -file env_conf.xml -id DATM_PRESAERO -val pt1_pt1
> ./configure -case

Caution

If you don’t set the start-year and run-length carefully as shown above the model will abort with a “dtlimit error” in the atmosphere model (see bug 1110 in the models/lnd/clm/doc/KnownLimitations file for documentation on this). Since, the forcing data for this site (and the MexicoCity site) is less than a year, the model won’t be able to run for a full year. The 1x1_urbanc_alpha site has data for more than a full year, but neither year is complete hence, it has the same problem (see the problem for this site above).

Important: Just like PTS_MODE above, By default it sets up to run with USE_MPSERIAL (in the env_build.xml file) turned on, which allows you to run the model interactively. On some machines this mode is NOT supported and you may need to change it to FALSE before you are able to build.

Warning

See the Section called Warning about Running with a Single-Processor on a Batch Machine for a warning about running single-point jobs on batch machines.

Note: Note, that when running a pt1_pt1 resolution the number of processors is automatically set to one. When running a single grid point you can only use a single processor. You might also want to set the “env_conf” variable: USE_MPSERIAL to TRUE so that you can also run interactively without having to use mpi to start up your job.
Creating your own single-point/regional surface datasets

The file: Quickstart.userdatasets (../Quickstart.userdatasets) in the models/lnd/clm/doc directory gives guidelines on how to create and run with your own single-point or regional datasets. Below we reprint the above guide.

Quick-Start to using your own datasets in clm4
===============================================

Assumptions: You are already familiar with the use of the cpl7 scripts for creating cases to run with "standalone" clm. See the Quickstart.GUIDE and the README files and documentation in the scripts directory for more information on this process.

We also assume that the env variable $CSMDATA points to the location of the standard datasets for your machine (/fis/cgd/cseg/csm/inputdata on bluefire). We also assume that the following variables are used to point to the appropriate values that you want to use for your case. Mask is included as part of your resolution for your case, and SIM_YEAR and SIM_YEAR_RANGE will be set appropriately for the particular use case that you choose for your compset (i.e. 1850_control, 20thC_transient etc.).

| SIM_YEAR -------- Simulation year (i.e. 1850, or 2000) |
| SIM_YEAR_RANGE -- Simulation year range (i.e. constant, or 1850-2000) |
| MASK ------------ Land mask (i.e. navy, USGS, or gx1v6) |

Process:

0.) Why do this?

An alternative to the steps below, is to create your case, and hand-edit the relevant namelists as appropriate with your own datasets. One reason for the process below is so that we can do automated testing on dataset inclusion. But, it also provides the following functionality to the user:

a.) New cases with the same datasets only require a small change to env_conf.xml and env_run.xml (steps 5, 6, and 8)
b.) You can clone new cases based on a working case, without having to hand-edit all of the namelists for the new case in the same way.
c.) The process will check for the existence of files when cases are configured so you can have the scripts check that datasets exist rather than finding out at run-time after submitted to batch.
d.) The process checks for valid namelists, and makes it less likely for you to put an error or typo in the namelists.
e.) The *.input_data_list files will be accurate for your case, you can use the check_input_data script to do queries on the files.
f.) Your dataset names will be closer to standard names, and easier for inclusion in standard clm (with the exception of creation dates).
g.) The regional extraction script (see 3.b below) will automatically create files with names following this convention.

1.) Create your own dataset area -- link it to standard dataset location

Create a directory to put your own datasets (such as /ptmp/$USER/my_inputdata). Use the script link_dirtree to link the standard datasets into this location. If you already have complete control over the datasets in $CSMDATA -- you can skip this step.

setenv MYCSMDATA /ptmp/$USER/my_inputdata
scripts/link_dirtree $CSMDATA MYCSMDATA

If you do this you can find the files you've added with...

find MYCSMDATA -type f -print

and you can find the files that are linked to the standard location with...

find $CSMDATA -type f -print

2.) Establish a "user dataset identifier name" string

You need a unique identifier for your datasets for a given resolution, mask, area, simulation-year, and simulation year-range. The identifier can be any string you want -- but we have the following suggestions:

Suggestions for global grids:
Chapter 5. How to run Single-Point/Regional cases

setenv MYDATAID $(degLat)x$(degLon)

Suggestions for regional grids: either give the number of points in the grid

setenv MYDATAID nmp_citySTATE
setenv MYDATAID nmp_cityCOUNTRY
setenv MYDATAID nmp_regionCOUNTRY
setenv MYDATAID nmp_region

or give the total size of the gridcells

setenv MYDATAID nmd_citySTATE
setenv MYDATAID nmd_cityCOUNTRY

for example: setenv MYDATAID 10x15 -- global 10x15 grid
setenv MYDATAID 1x1pt_boulderCO -- single-point for Boulder CO
setenv MYDATAID 5x5pt_boulderCO -- 5x5 region around Boulder CO
setenv MYDATAID 1x1deg_boulderCO -- 1x1 degree region around Boulder CO
setenv MYDATAID 13x12pt_f19_alaskaUSA1 -- 13x12 gridcells from f19
(1.9x2.5) global resolution over Alaska

3.) Add your own datasets in the standard locations in that area

3.a) Create datasets using the standard tools valid for any specific points

Use the tools in models/lnd/clm/tools to create new datasets. Tools such as: mkgriddata, mksurfdata, mkdatadomain, and the regridding tools in ncl_scripts

(see the models/lnd/clm/bld/namelist_files/namelist_defaults_usr_files.xml for the exact syntax for all files).

surfdata: copy files into:
$MYCSMDATA/lnd/clm2/surfdata/surfdata_${MYDATAID}_simyr${SIM_YEAR}.nc
fatmgrid: copy files into:
$MYCSMDATA/lnd/clm2/griddata/griddata_${MYDATAID}.nc
fatmlndfrc: copy files into:
$MYCSMDATA/lnd/clm2/griddata/fracdata_${MYDATAID}_${MASK}.nc
domainfile: copy files into:
$MYCSMDATA/atm/datm7/domain.clm/domain.lnd.${MYDATAID}_${MASK}.nc

3.b) Use the regional extraction script to get regional datasets from the global ones

Use the getregional_datasets.pl script to extract out regional datasets of interest. Note, the script works on all files other than the "finidat" file as it's a 1D vector file.

For example, Run the extraction for data from 52-73 North latitude, 190-220 longitude that creates 13x12 gridcell region from the f19 (1.9x2.5) global resolution over Alaska.

cd models/lnd/clm/tools/ncl_scripts
./getregional_datasets.pl -sw 52,190 -ne 73,220 -id $MYDATAID \
-ucmdata $MYCSMDATA

Repeat this process if you need files for multiple sim_year, and sim_year_range values.

4.) Setup your case

Follow the standard steps for executing "scripts/create_newcase" and customize your case as appropriate.

i.e.
./create_newcase -case my_userdataset_test -res pt1_pt1 -compset I1850 \
-mach bluefire

The above example implies that: MASK=gx1v6, SIM_YEAR=1850, and SIM_YEAR_RANGE=constant.

5.) Edit the env_run.xml in the case to point to your new dataset area

Edit DIN_LOC_ROOT_CSMDATA in env_run.xml to point to $MYCSMDATA

./xmlchange -file env_run.xml -id DIN_LOC_ROOT_CSMDATA -val $MYCSMDATA

6.) Edit the env_conf.xml in the case to point to your user dataset identifier name.

Edit CLM_USRDAT_NAME to point to $MYDATAID

./xmlchange -file env_conf.xml -id CLM_USRDAT_NAME -val $MYDATAID

124
Chapter 5. How to run Single-Point/Regional cases

7.) Configure the case as normal
   ./configure -case

8.) Run your case as normal

Using getregional_datasets.pl to get a complete suite of single-point/regional surface datasets from global ones

Use the regional extraction script to get regional datasets from the global ones. The getregional_datasets.pl script extracts output regional datasets of interest. Note, the script works on all files other than the "finidat" file as it’s a 1D vector file. The script will extract out a block of gridpoints from all the input global datasets, and create the full suite of input datasets to run over that block. The input datasets will be named according to the input "id" you give them and the id can then be used as input to CLM_USRDAT_NAME to create a case that uses it. See the section on CLM Script Configuration Items for more information on setting CLM_USRDAT_NAME (in Chapter 1). The list of files extracted by their name used in the namelists are: fatmgrid, fatmlndfrc, fsurdat, fpftdyn, findtopo, streamFldfilename, ndep, and the DATM files domainfile, and faerdep. For more information on these files see the Table on required files.

The alternatives to using this script are to use PTS_MODE, discussed earlier, to use PTCLM discussed in the next chapter, or creating the files individually using the different file creation tools (given in the Tools Chapter). Creating all the files individually takes quite a bit of effort and time. PTS_MODE has some limitations as discussed earlier, but also as it uses global files, is a bit slower when running simulations than using files that just have the set of points you want to run over. Another advantage is that once you’ve created the files using this script you can customize them if you have data on this specific location that you can replace with what’s already in these files.

The script requires the use of both "Perl" and "NCL". See the NCL Script section in the Tools Chapter on getting and using NCL and NCL scripts. The main script to use is a Perl script which will then in turn call the NCL script that actually creates the output files. The ncl script gets it’s settings from environment variables set by the perl script. To get help with the script use ".-help" as follows:

```
> cd models/lnd/clm/tools/ncl_scripts
> ./getregional_datasets.pl -help
```

The output of the above is:

SYNOPSIS

getregional_datasets.pl [options] Extracts out files for a single box region from the global grid for the region of interest. Choose a box determined by the NorthEast and SouthWest corners.

OPTIONS

- debug [or -d]
  Just debug by printing out what the script would do.

- help [or -h]
  Print usage to STDOUT.

- landmask "landmask"
  Type of land-mask (i.e. navy, gx3v7, gx1v6 etc.) (default gx1v6)

- nycsdata "dir"
  Root directory of where to put your csdata.
  (default /home/erik/inputdata or value of CSMDATA env variable)
Chapter 5. How to run Single-Point/Regional cases

-`mydataid "name"` [or `-id`]  
  Your name for the region that will be extracted. 
  (REQUIRED) 
  Recommended name: grid-size_global-resolution_location 
  (i.e. 12x13pt_f19_alaskaUSA for 12x13 grid cells from the f19 global resolution over Alaska) 

-`-NE_corner "lat,lon"` [or `-ne`]  
  North East corner latitude and longitude 
  (REQUIRED) 

-`-nomv`  
  Do NOT move datasets to final location, just leave them in current directory 

-`-res "resolution"`  
  Global horizontal resolution to extract data from (default 1.9x2.5). 

-`-rcp "pathway"`  
  Representative concentration pathway for future scenarios 
  Only used when simulation year range ends in a future year, such as 2100. 
  (default -999.9). 

-`-sim_year "year"`  
  Year to simulate for input datasets (i.e. 1850, 2000) (default 2000) 
  (default 2000) 

-`-sim_yr_rng "year-range"`  
  Range of years for transient simulations 
  (i.e. 1850-2000, 1850-2100, or constant) (default constant) 

-`-SW_corner "lat,lon"` [or `-sw`]  
  South West corner latitude and longitude 
  (REQUIRED) 

-`-verbose` [or `-v`]  
  Make output more verbose.

The **required** options are: `-id`, `-ne`, and `-se`, for the output identifier name to use in the filenames, latitude and longitude of the Northeast corner, and latitude and longitude of the SouthEast corner (in degrees). Options that specify which files will be used are: `-mask`, `-res`, `-rcp`, `-sim_year`, and `-sim_yr_rng` for the land-mask to use, global resolution name, representative concentration pathway for future scenarios, simulation year, and simulation year range. The location of the input and output files will be determined by the option `-mycsmdata` (can also be set by using the environment variable `$CSMDATA`). If you are running on a machine like at NCAR where you do NOT have write permission to the CESM inputdata files, you should use the `scripts/link_dirtree` script to create soft-links of the original files to a location that you can write to. This way you can use both your new files you created as well as the original files and use them from the same location.

The remaining options to the script are `-debug`, and `-verbose`. `-debug` is used to show what would happen if the script was run, without creating the actual files. `-verbose` adds extra log output while creating the files so you can more easily see what the script is doing.

For example, Run the extraction for data from 52-73 North latitude, 190-220 longitude that creates 13x12 gridcell region from the f19 (1.9x2.5) global resolution over Alaska.

**Example 5-4. Example of running getregional_datasets.pl to get datasets for a specific region over Alaska**

```
> cd scripts
First make sure you have a inputdata location that you can write to
You only need to do this step once, so you won't need to do this in the future
> setenv MYCSMDATA $HOME/inputdata # Set env var for the directory for input data
> ./link_dirtree $CSMDATA $MYCSMDATA
> cd ../models/lnd/clm/tools/ncl_scripts
> ./getregional_datasets.pl -sw 52,190 -ne 73,220 -id 13x12pt_f19_alaskaUSA -mycsmdata $MYCSMDATA
```

Repeat this process if you need files for multiple sim_year, resolutions, land-masks, and sim_year_range values.
Chapter 5. How to run Single-Point/Regional cases

Warning
See the Section called Warning about Running with a Single-Processor on a Batch Machine for a warning about running single-point jobs on batch machines.

Note: See the Section called Managing Your Own Data-files in Chapter 3 for notes about managing your data when using link_dirtree.

Now to run a simulation with the datasets created above, you create a single-point case, and set CLM_USRDAT_NAME to the identifier used above. Note that in the example below we set the number of processors to use to one (-pecount 1). For a single point, you should only use a single processor, but for a regional grid, such as the example below you could use up to the number of grid points (12x13=156 processors).

Example 5-5. Example of using CLM_USRDAT_NAME to run a simulation using user datasets for a specific region over Alaska

> cd scripts
# Create the case and set it to only use one processor
> ./create_newcase -case my_userdataset_test -res pt1_pt1 -compset I1850 \
  -mach bluefire
> cd my_userdataset_test/
> ./xmlchange -file env_run.xml -id DIN_LOC_ROOT_CSMDATA -val MYCSMDATA
> ./xmlchange -file env_conf.xml -id CLM_USRDAT_NAME -val 13x12pt_f19_alaskaUSA
> ./xmlchange -file env_conf.xml -id CLM_BLDNML_OPTS -val '-mask gx1v6'
> ./xmlchange -file env_conf.xml -id CLM_PT1_NAME -val 13x12pt_f19_alaskaUSA
> ./configure -case

Running with your own atmosphere forcing

Here we want to run with our own customized datasets for CLM as well as running with our own supplied atmosphere forcing datasets. Thus we effectively combine the information from the Section called Running Supported Single-point Datasets that have their own Atmospheric Forcing with the Section called Creating your own single-point/regional surface datasets. First we need to follow the procedures in the Section called Running Supported Single-point Datasets that have their own Atmospheric Forcing to come up with CLM datasets that are customized for our point or region in question. This includes running link_dirtree to create a directory location where you can add your own files to it. Next, set DATM_MODE to "CLM1PT" and CLM_PT1_NAME and CLM_USRDAT_NAME to the id of the data you created. To see a list of what the filenames need to be see the section on setting CLM_USRDAT_NAME.

Next we need to setup the atmosphere forcing data in NetCDF format that can be read by DATM. There is a list of eight variables that are expected to be on the input files with the names and units on the following table (in the table TDEW and SHUM are optional fields that can be used in place of RH). In the table we also list which of the fields are required and if not required what the code will do to replace them. If the names of the fields are different or the list is changed from the standard list of eight fields:

---

127
Chapter 5. How to run Single-Point/Regional cases

FLDS, FSDS, PRECTmms, PSRF, RH, TBOT, WIND, and ZBOT, the resulting streams file will need to be modified to take this into account (see an example streams file for this in Example 5-7 below).

Table 5-1. Atmosphere Forcing Fields

<table>
<thead>
<tr>
<th>Short-name</th>
<th>Description</th>
<th>Units</th>
<th>Required?</th>
<th>If NOT required how replaced</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLDS</td>
<td>incident longwave (FLDS)</td>
<td>W/m²</td>
<td>No</td>
<td>calculates based on Temperature, Pressure and Humidity</td>
</tr>
<tr>
<td>FSDS</td>
<td>incident solar (FSDS)</td>
<td>W/m²</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>FSDSdif</td>
<td>incident solar (FSDS) diffuse</td>
<td>W/m²</td>
<td>No</td>
<td>based on FSDS</td>
</tr>
<tr>
<td>FSDSdir</td>
<td>incident solar (FSDS) direct</td>
<td>W/m²</td>
<td>No</td>
<td>based on FSDS</td>
</tr>
<tr>
<td>PRECTmms</td>
<td>precipitation (PRECTmms)</td>
<td>mm/s</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>PSRF</td>
<td>pressure at the lowest atm level (PSRF)</td>
<td>Pa</td>
<td>No</td>
<td>assumes standard-pressure</td>
</tr>
<tr>
<td>RH</td>
<td>relative humidity at the lowest atm level (RH)</td>
<td>%</td>
<td>No</td>
<td>can be replaced with SHUM or TDEW</td>
</tr>
<tr>
<td>SHUM</td>
<td>specific humidity at the lowest atm level</td>
<td>kg/kg</td>
<td>Optional in place of RH</td>
<td>can be replaced with RH or TDEW</td>
</tr>
<tr>
<td>TBOT</td>
<td>temperature at the lowest atm level (TBOT)</td>
<td>K (or can be C)</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>TDEW</td>
<td>dew point temperature</td>
<td>K (or can be C)</td>
<td>Optional in place of RH</td>
<td>can be replaced with RH or SHUM</td>
</tr>
<tr>
<td>WIND</td>
<td>wind at the lowest atm level (WIND)</td>
<td>m/s</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>ZBOT</td>
<td>observational height</td>
<td>m</td>
<td>No</td>
<td>assumes 30 meters</td>
</tr>
</tbody>
</table>

All of the variables should be dimensioned: time, lat, lon, with time being the unlimited dimension. The coordinate variable "time" is also required with CF-compliant units in days, hours, minutes, or seconds. It can also have a calendar attribute that can be "noleap" or "gregorian". Normally the files will be placed in the: $MYCSMDATA/atm/datm7/CLM1PT_data/$MYUSRDAT directory with separate files per month called YYYY-MM.nc where YYYY-MM corresponds to the four digit year and two digit month with a dash in-between. You also need a domain file that gives the coordinate information for the data that should be placed in: $MYCSMDATA/atm/datm7/domain.1nd.$MYUSRDAT_USGS.nc.
Example 5-6. Example of setting up a case with your own atmosphere forcing

> cd scripts
# First make sure you have a inputdata location that you can write to
# You only need to do this step once, so you won’t need to do this in the future
> setenv MYCSMDATA $HOME/inputdata # Set env var for the directory for input data
> ./link_dirtree $CSMDATA $MYCSMDATA
# Next create and move all your datasets into $MYCSMDATA with id $MYUSRDAT
# See above for naming conventions
# Now create a single-point case
> ./create_newcase -case my_atmforc_test -res pt1_pt1 -compset I1850 \ 
  -mach bluefire
# Set the data root to your inputdata directory, and set CLM_PT1_NAME and CLM_USRDAT_NAME
# to the user id you created for your datasets above
> ./xmlchange -file env_run.xml -id DIN_LOC_ROOT_CSMDATA -val $MYCSMDATA
> ./xmlchange -file env_conf.xml -id CLM_PT1_NAME -val $MYUSRDAT
> ./xmlchange -file env_conf.xml -id CLM_USRDAT_NAME -val $MYUSRDAT
# Set the land-mask to USGS, so both clm and DATM can find files
> ./xmlchange -file env_conf.xml -id CLM_BLDNML_OPTS -val '-mask USGS'
# Then set DATM_MODE to single-point mode so DATM will use your forcing datasets
# Put your forcing datasets into $MYCSMDATA/atm/datm7/CLM1PT_data/$MYUSRDAT
> ./xmlchange -file env_conf.xml -id DATM_MODE -val CLM1PT
> ./configure -case
# If the list of fields, or filenames, filepaths, or fieldnames are different
# you’ll need to edit the DATM namelist streams file to make it consistent
> $EDITOR Buildconf/datm.buildnml.csh

Warning
See the Section called Warning about Running with a Single-Processor on a Batch Machine for a warning about running single-point jobs on batch machines.

Note: See the Section called Managing Your Own Data-files in Chapter 3 for notes about managing your data when using link_dirtree.

Now, we’ll show an example of what the DATM streams file might look like for a case with your own forcing data with 3-hourly forcing. In this example, we’ll leave off the fields: ZBOT, and FLDS so they’ll be calculated as given in the Table 5-1 table above. We’ll also include: FSDSdif and FSDSdir which aren’t required, and we’ll use TDEW in place of RH. In this example the datafiles are in NetCDF format and contain the fields: TA, Tdew, WS, PREC, Rg, Rgdir, Rgdif, and PRESS which are translated into the DATM internal names in this streams file. There is also a domain file that has the position information for this location. The normal assumption for CLM1PT mode in the DATM is that data is hourly or half-hourly and as such is often enough that using the data on the nearest time-stamp is reasonable and as such the data is in a single streams file (see the Section called CLM1PT mode and it’s DATM settings in Chapter 1 for more information on the default settings for DATM and how to change them. If the data is less often three to six hours -- see Example 5-7 below, where you will need to modify the time-interpolation method as well as the time stamp offsets. In the example below we also have to divide the single stream file into three files to manage the time-stamps and time interpolation algorithm for the different types of data differently.
Example 5-7. Example of DATM streams files with your own forcing for 3-hourly data

Precipitation streams file (clm1PT.1x1pt_lapazMEX.precip.stream.txt file).

```
<streamtemplate>
 <stream>
 <dataSource>CLMNCEP</dataSource>
 <domainInfo>
 <variableNames>
 time time xc lon yc lat area area mask mask
 </variableNames>
 <filePath>$DIN_LOC_ROOT/atm/datm7/domain.clm</filePath>
 <fileNames>domain.lnd.1x1pt_lapazMEX_navy.nc</fileNames>
 </domainInfo>
 <fieldInfo>
 <variableNames>
 PRECTmms PREC
 </variableNames>
 <offset>-5400</offset>
 <filePath>$DIN_LOC_ROOT/atm/datm7/CLM1PT_data/1x1pt_lapazMEX</filePath>
 </fieldInfo>
 </stream>
</streamtemplate>
```

Solar streams file (clm1PT.1x1pt_lapazMEX.solar.stream.txt file).

```
<streamtemplate>
 <stream>
 <dataSource>CLMNCEP</dataSource>
 <domainInfo>
 <variableNames>
 time time xc lon yc lat area area mask mask
 </variableNames>
 <filePath>$DIN_LOC_ROOT/atm/datm7/domain.clm</filePath>
 <fileNames>domain.lnd.1x1pt_lapazMEX_navy.nc</fileNames>
 </domainInfo>
 <fieldInfo>
 <variableNames>
 FSDS Rg FSDSdir Rgdir FSDSdif Rgdif
 </variableNames>
 </fieldInfo>
 </stream>
</streamtemplate>
```
Other fields streams file. (clm1PT.1x1pt_lapazMEX.other.stream.txt file).

Example streams namelist for the above streams files:

```
srbr_strdata_nml
 dataMode = 'CLMNCEP'
 domainFile = '$DOMAINFILE'
 streams = 'clm1PT.1x1pt_lapazMEX.solar.stream.txt 1 2004 2009 ',
 'clm1PT.1x1pt_lapazMEX.precip.stream.txt 1 2004 2009 ',
 'clm1PT.1x1pt_lapazMEX.other.stream.txt 1 2004 2009 '
```

Chapter 5. How to run Single-Point/Regional cases
Chapter 5. How to run Single-Point/Regional cases

Note: The example above shows the resolved namelist and streams file after configure has been run. In order to save this configuration for future use, you would need to edit the DATM template adding new DATM_MODE see the Section called Adding a new DATM_MODE to the DATM template in Appendix A for more information on how to do this.

We’ve outlined and given a few examples of using your own atmosphere forcing. In the next chapter we go into the details of using PTCLM1.110726.
Chapter 6. How to run PTCLM1.110726

PTCLM (pronounced either as point clime or Pee-Tee clime) is a Python script to help you set up PoinT CLM simulations. It runs the CLM tools for you to get datasets set up, and copies them to a location you can use them according to the CLM_USRDAT_NAME naming convention. Then it runs create_newcase for you and modifies the env settings and namelist appropriately. PTCLM has a simple ASCII text file for storing basic information for your sites. We also have complete lists for AmeriFlux and Fluxnet-Canada sites, although we only have the meteorology data for one site. For other sites you will need to obtain the meteorology data and translate it to a format that the CESM DATM model can use. But, even without meteorology data PTCLM is useful to setup datasets to run with standard CLM_QIAN data.

The original authors of PTCLM are: Daniel M. Ricciuto, Dali Wang, Peter E. Thornton, Wilfred M. Post all at Environmental Sciences Division, Oak Ridge National Laboratory (ORNL) and R. Quinn Thomas at Cornell University. It was then modified fairly extensively by Erik Kluzek at NCAR. We want to thank all of these individuals for this contribution to the CESM effort. We also want to thank the folks at University of Michigan Biological Stations (US-UMB) who allowed us to use their Fluxnet station data and import it into our inputdata repository, especially Gil Bohrer the PI on record for this site.

Introduction to PTCLM

To get help on PTCLM1.110726 use the "--help" option as follows.

```
> cd scripts/ccsm_utils/Tools/lnd/clm/PTCLM
> ./PTCLM.py --help
```

The output to the above command is as follows:

Here we give a simple example of using PTCLM1 for a straightforward case of running at the US-UMB Fluxnet site on bluefire where we already have the meteorology data on the machine. Note, see the Section called Converting AmeriFlux Data for use by PTCLM for permission information to use this data.

Example 6-1. Example of running PTCLM1 for US-UMB on bluefire

```
setenv CSMDATA /fis/cgd/cseg/csm/inputdata
setenv MYCSMDATA $HOME/inputdata
setenv SITE US-UMB
setenv MYMACH bluefire
setenv MYCASE testPTCLM

First link the standard input files to a location you have write access
cd scripts
./link_dirtree $CSMDATA $MYCSMDATA

Next build all of the clm tools you will need
```

133
Chapter 6. How to run PTCLM1

1.10726

cd ../models/land/clm/tools/mksurfdata
gmake
gmake clean
cd ../mkdatadomain
gmake
gmake clean
cd ../mkgriddata
gmake

gmake clean

Next run PTCLM (NOTE: MAKE SURE python IS IN YOUR PATH)
cd $MYCASE

# PTCLM.py -m $MYMACH --case=$MYCASE --site=$SITE --csmdata=$MYCSMDATA --aerdepgrid --ndepgrid

# NOTE: we use --aerdepgrid --ndepgrid so that you use the global
# aerosol and Nitrogen deposition files rather than site-specific ones.

cd $MYCASE

# Finally configure, build, and run the case as normal

Guide to the options of PTCLM

There are three types of options to PTCLM: required, configure/run-time, and dataset generation options. The three required options are the three settings that MUST be specified for PTCLM to work at all. The other settings have default values that will default to something useful. The configure/run-time options control how the simulation will be setup and run. The dataset generation options control the generation of datasets needed when PTCLM is run. Most options use a double dash "--" "longname" such as "--list", but the most common options also have a short-name with a single dash (such as -m instead of --machine).

The required options to PTCLM are: inputdata directory (-d), machine (-m) and site-name (-s). Inputdata directory is the directory where you have the CESM inputdata files, you need to have write access to this directory, so if you are running on a machine that you do NOT have write access to the standard inputdata location (such as NCAR bluefire or ORNL jaguar) you need to link the standard files to a location you do have control over. We recommend using the scripts/link_dirtree tool to do that.

"machine" is the scripts name for the machine/compiler you will be using for your case. And finally site-name is the name of the site that you want to run for. Site-name can either be a valid CLM_PT1_NAME supported dataset name or a Fluxnet site name from the list of sites you are running on (see the --sitegroupname for more information about the site lists).

After PTCLM is run a case directory where you can then configure, build and run your CESM case as normal. It also creates a README.PTCLM in that directory that documents the commandline options to PTCLM that were used to create it.

After "help" the "list" option is one of the most useful options for getting help on using PTCLM. This option gives you information about some of the other options to PTCLM. To get a list of the machine, sites, and compsets that can be used for PTCLM use the "--list" option as follows.

> cd scripts/ccsm_utils/Tools/land/clm/PTCLM
> ./PTCLM.py --list

The output to the above command is as follows:
Chapter 6. How to run PTCLM1.110726

---------------- PTCLM version ----------------

PTCLM0.5_scripts_branchTag_cesm1_0_4_01_PTCLM1.110726-----------------------------

./PTCLM.py --list

OPTIONS:

Site name: list

CESM Component set: list

CESM machine: none

Root CLM directory: /cesmweb/html/models/cesm1.0/clm

Case name: list_list

Case directory: /cesmweb/html/models/cesm1.0/clm/scripts

Accelerated Decomposition mode: False

Exit spinup mode: False

Final spin up: False

Using QIAN climate inputs: False

Findat file: <none>

Sites group name: EXAMPLE

Use preexisting point data: False

** Surface data file will be built using site-level data when available unless otherwise specified **

Extract PFT data from gridded files: False

Extract soil data from gridded files: False


Open Site data file: PTCLM_sitedata/EXAMPLE_sitedata.txt

site = site_code name: name Region: state

site = US-UMB name: UMBS Region: MI

Supported CLMPT name dataset names are:

site = 1x1_tropicAtl
site = 1x1_camdenNJ
site = 1x1_vancouverCAN
site = 1x1_mexicocityMEX
site = 1x1_asphaltjungleNJ
site = 1x1_brazil
site = 1x1_urbanc_alpha
site = 1x1_numaIA
site = 1x1_smallvilleIA
Overview on using PTCLM

Steps in running PTCLM

1. Setup Inputdata directory with write access (use link_dirtree script)
   You need to setup an inputdata directory where you have write access to it. Normally, for NCAR machines the data is on an inputdata where the user does NOT have write access to it. A way that you can get around this is to use the link_dirtree script to create softlinks from the normal location to a location you have write access to. So for example on bluefire:

   ```bash
 > setenv CSMDATA /fs/cgd/csm/inputdata
 > setenv MYCSMDATA $HOME/inputdata
 > mkdir MYCSMDATA
 > cd scripts
 > ./link_dirtree $CSMDATA MYCSMDATA
   ```

   See the Section called Managing Your Own Data-files in Chapter 3 for more information on this.

2. Build the CLM tools
   Next you need to make sure all the CLM FORTRAN tools are built.

   ```bash
 > cd models/lnd/clm/tools/mkgriddata
 > gmake
 > gmake clean
 > cd ../mkdatadomain
 > gmake
 > gmake clean
 > cd ../mksurfdata
 > gmake
 > gmake clean
   ```

3. Run PTCLM
   Next you actually run PTCLM1 which does the different things listed below:
   a. PTCLM names your case based on your input
      PTCLM1 names you case based on the input you give to it.
      
      ```bash
 [Prefix]_SiteCode_Compsset[QIAN]_[spinuptype]
      ```
      Where:
      Prefix is from the caseidprefix option (or blank if not used).
      SiteCode is the site name you entered with the -s option.
      Compset is the compset name you entered with the -c option.
      _QIAN is part of the name only if the useQIAN is used.
      _spinuptype is part of the name if one of: ad_spinup, exit_spinup, or final_spinup is used, and the exact spinup name chosen is used.
      
      For example, the casename for the following will be:

      ```bash
 > cd scripts
 > ./PTCLM.py -m bluefire -s US-UMB -d $MYCSMDATA -c f_1_2000_CN --ad_spinup --useQIAN
      ```

      "US-UMB_f_2000_CN_QIAN_ad_spinup".
   b. PTCLM creates datasets for you
      It will populate SMYCSMDATA with new datasets it creates using the CLM tools.
   c. If a transient compset and PTCLM1 finds a _dynpftdata.txt file
      If you are running a transient compset (such as the "f_1850-2000_CN" compset) AND there is a file in the PTCLM_sitedata directory under the PTCLM directory called $SITE_dynpftdata.txt it will use this file for the land-use changes. Otherwise it will
leave land-use constant, unless you use the pftgrid option so it uses the global dataset for land-use changes. See the Section called Dynamic Land-Use Change Files for use by PTCLM for more information on this. There is a sample transient dataset called US-Hal_dynpftdata.txt. Transient compsets, are compsets that create transient land-use change and forcing conditions such as: ‘I_1850-2000’, ‘I_1850-2000_CN’, ‘I_RCP8.5_CN’, ‘I_RCP6.0_CN’, ‘I_RCP4.5_CN’, or ‘I_RCP2.6_CN’.

d. PTCLM creates a pft-physiology for you

PTCLM1 will create a local copy of the pft-physiology specific for your site that you could then customize with changes specific for that site.

e. PTCLM creates a README.PTCLM for you

PTCLM1 will create a simple text file with the command line for it in a file called README.PTCLM in the case directory it creates for you.

4. Customize, configure, build and run case as normal

You then customize your case as you would normally. See the Chapter 1 chapter for more information on doing this.

Details on the options of PTCLM

Next we discuss the configure and run-time options, dividing them up into configure, spinup, and run-time options.

Configure options include:

-\(c\) MYCOMPSET, --compset=MYCOMPSET
--caseidprefix=MYCASEID
--cesm_root=BASE_CESM
--namelist=NAMELIST
--rmold
--scratchroot=SCRATCHROOT
--sitegroupname=SITEGROUP
--QIAN_tower_yrs
--useQIAN

--compset

The "-c" option is the most commonly used option after the required options, as it specifies the CESM scripts component set to use with PTCLM1. The default compset is the "ICN" compset with CN on for present day conditions.

--caseidprefix

This option gives a prefix to include in the casename when the case is created, in case you want to customize your casenames a bit. By default, casenames are figured out based on the other options. The argument to this option can either be a name to prefix casenames with and/or a pathname to include. Hence, if you want cases to appear in a specific directory you can give the pathname to that directory with this option.
--cesm_root

This option is for running PTCLM1 with a different root directory to CESM than the version PTCLM exists in. Normally you do NOT need to use this option.

--namelist

This option adds any items given into the CLM user_n1_clm namelist. This allows you to add customizations to the namelist before the clm.buildnml.csh file is created for the case.

--rmold

This option will remove an old case directory of the same name if one exists. Otherwise, if an old case directory already exists and you try to run PTCLM it will return with an error.

--scratchroot

This option is ONLY valid when using one of the generic machines (the -m option). This passed onto create_newcase and gives the location where cases will be built and run.

--sitegroupname

In the PTCLM directory there is a subdirectory "PTCLM_sitedata" that contains files with the site, PFT and soil data information for groups of sites. These site groups are all separate ASCII files with the same prefix followed by a "_*data.txt" name. See the Section called PTCLM Group Site Lists for more information on these files. By default we have provided three different valid group names: EXAMPLE
AmeriFlux
Fluxnet-Canada

The EXAMPLE is the group used by default and ONLY includes the US-UMB site as that is the only site we have data provided for. The other two site groups include the site information for all of both the AmeriFlux and Fluxnet-Canada sites. You can use the "sitegroupname" option to use one of the other lists, or you can create your own lists using the EXAMPLE file as an example. Your list of sites could be real world locations or could be theoretical "virtual" sites given to exercise CLM on differing biomes for example. Note, see the Section called Converting AmeriFlux Data for use by PTCLM with permission information to use the US-UMB data.

--useQIAN

This option says to use the standard CLM global Qian T62 atmospheric forcing rather than any tower site forcing data available. Otherwise, PTCLM will try to find tower forcing data for the specific site entered.

--QIAN_tower_yrs

This option is used with the "useQIAN" option to set the years to cycle over for the Qian data. In this case Qian atmospheric forcing will be used, but the simulation will run over the same years that tower site is available for this site.

Spinup options include:

--coldstart
--ad_spinup
--exit_spinup
--final_spinup
--finidat=FINIDAT
Chapter 6. How to run PTCLM

The spinup options enable the different CN spinup modes, but also set the run length. The coldstart option says to startup with OUT an initial condition file, while the finidat option explicitly gives the initial condition file to use. Obviously, the different spinup options can NOT be used together, nor can the coldstart and finidat options be either.

--coldstart

This option ensures that a cold-start will be done with arbitrary initial conditions.

--ad_spinup

This option enables the accelerated decomposition mode when a CN compset is used. It also sets the run-length as given in the example for running exit spinup in the Section called Spinning up the Satellite Phenology Model (CLMSP spinup) in Chapter 4. SEE WARNING BELOW.

--exit_spinup

This option enables the exit spinup mode when a CN compset is used. It also sets the run-length to a year just as given in the example for running exit spinup in the Section called Spinning up the Satellite Phenology Model (CLMSP spinup) in Chapter 4. SEE WARNING BELOW.

--final_spinup

This option sets the run length as given in the example for a final spinup in Example 4-5. This option can be used for any compset.

--finidat

This option sets the initial condition file to startup the simulation from.

Run-time options include:

--debug
--run_n=MYRUN_N
--run_units=MYRUN_UNITS
--stdurbpt

--debug

This option tells PTCLM to echo what it would do if it were run, but NOT actually run anything. So it will show you the dataset creation commands it would use. It does however, run create_newcase, but then it only displays the xmlchange commands and changes that it would do. Also note that if you give the "--rmold" option it won’t delete the case directory beforehand. Primarily this is intended for debugging the operation of PTCLM.

--run_n

This option along with run_units is used to set the length for the simulation. "run_n" is the number of units to use. The default run length depends on the site, compset, and configuration and for example if a "spinup" option is selected.
Chapter 6. How to run PTCLM 1.110726

--run_units

This option is the units of time to use for the length of the simulation. It is used along with "run_n" to set the length of the simulation. The default run length depends on the site, compset, and configuration and for example if a "spinup" option is selected.

--stdurbpt

This option turns on the "stdurbpt_pd" use-case for CLM_NML_USE_CASE. This option can NOT be used for compsets that set the use-case to something besides present-day.

Lastly we discuss the dataset generation options. The dataset generation options are:

--aerdepgrid
--ndepgrid
--pftgrid
--soilgrid
--nopointdata
--owritesrfaer

The options that with a "grid" suffix all mean to create datasets using the global gridded information rather than using the site specific point data. By default the site specific point data is used. The "nopointdata" and "owritesrfaer" options have to do with file creation.

Because supported single-point datasets already have the data created for them, you MUST use the "nopointdata" and "ndepgrid" options when you are using a supported single-point site. You must use "ndepgrid" even for a compset without CN. You also can NOT use the options: "soilgrid", "pftgrid", "aerdepgrid", or "owritesrfaer".

--aerdepgrid

This option says to use the aerosol deposition files from the global dataset rather than creating an interpolated version.

This option must NOT be used when you are using a site that is a supported single point dataset.

--ndepgrid

This option says to use the Nitrogen deposition files from the global dataset rather than creating an interpolated version. This is only needed for compsets with CN.

Note: This option is required when you are using a site that is a supported single point dataset. This is true even when you are NOT using a compset with CN.

--pftgrid

This option says to use the PFT values provided on the global dataset rather than using the specific site based values from the PTCLM_sitedata/*_pftdata.txt file when creating the surface dataset.
Chapter 6. How to run PTCLM

This option must NOT be used when you are using a site that is a supported single point dataset.

--soilgrid
This option says to use the soil values provided on the global dataset rather than using the specific site based values from the PTCLM_sitedata/*_soildata.txt file when creating the surface dataset.
This option must NOT be used when you are using a site that is a supported single point dataset.

--nopointdata
This option says to NOT create any input datasets -- assume this step has already been done. If datasets weren’t already created, your case will fail when you try to run it. In general the first time you run PTCLM for a new site you want it to generate new datasets, but the next time and future times you want to use this option so that it doesn’t waste a lot of time rebuilding datasets over again.

**Note:** This option is required when you are using a site that is a supported single point dataset.

--owritesrfaer
This option says to overwrite any surface and/or aerosol deposition datasets that were already created. Otherwise, the creation of these files will be skipped if a file is already found (but it WILL create files if they don’t exist).
This option must NOT be used when you are using a site that is a supported single point dataset.

**Note:** Note on the aerosol and Nitrogen deposition files. When the “aerdepgrid” and “ndepgrid” options are NOT used -- aerosol and Nitrogen deposition files will be created by interpolating from the global datasets. However, after these interpolated files are created you could customize them for your site with data that you provide. You could then write protect the files and use the “nopointdata” option so that PTCLM doesn’t try to overwrite them in the future.

Examples using PTCLM

Now let’s give a few more complex examples using some of the options we have discussed above.

In this first example, we’ll demonstrate using a supported single point dataset, which then requires using the “nopointdata” and “ndepgrid” options. We’ll also demonstrate the compset option, “stdurbpt” and “caseidprefix” options.
Chapter 6. How to run PTCLM

Example 6-2. Example of running PTCLM for the Mexicocity supported single point dataset

```bash
> cd scripts/ccsm_utils/Tools/lnd/clm/PTCLM
> ./PTCLM.py -m bluefire -s 1x1_mexicocityMEX -d $CSMDATA --nopointdata --ndepgrid --stdurbpt -c I --caseidprefix 'pwd'/myPTCLMcases/site
> cd myPTCLMcases/site_1x1_mexicocityMEX_I
> ./configure -case
Now build and run normally
> ./site_1x1_mexicocityMEX_I.bluefire.build
Here we show running interactively
> ./site_1x1_mexicocityMEX_I.bluefire.run
```

Now, let’s demonstrate using a different group list, doing a spinup, running with Qian global forcing data, but using tower years to set the years to run over. This uses the options: sitegroupname, ad_spinup, useQIAN, and QIANtower_years.

Example 6-3. Example of running PTCLM for a spinup simulation with Qian data for tower years.

```bash
> cd scripts/ccsm_utils/Tools/lnd/clm/PTCLM
> ./PTCLM.py -m bluefire -s US-Ha1 -d $CSMDATA --sitegroupname AmeriFlux --ad_spinup --useQIAN --QIAN_tower_yrs
> cd ../../../../../US-Ha1_ICN_QIAN_ad_spinup
> ./configure -case
Now build and run normally
> ./US-Ha1_ICN_QIAN_ad_spinup.bluefire.build
Here we show running interactively
> ./US-Ha1_ICN_QIAN_ad_spinup.bluefire.run
```

Finally, let’s demonstrate using a generic machine (which then requires the scratchroot option), using the global grid for PFT and soil types, and setting the run length to two months.

Example 6-4. Example of running PTCLM on a generic machine with global PFT and soil types dataset

```bash
> cd scripts/ccsm_utils/Tools/lnd/clm/PTCLM
Note, see the the Section called Converting AmeriFlux Data for use by PTCLM with permission information
to use the US-UMB data.
> ./PTCLM.py -m generic_darwin_intel -s US-UMB -d $CSMDATA --pftgrid --soilgrid --scratchroot $HOME --run_n 2 --run_units nmonths
> cd ../../../../../US-UMB_ICN
> ./configure -case
Now build
> ./US-UMB_ICN.generic_darwin_intel.build
To get the files from the svn server...
> ../ccsm_utils/Tools/listfilesin_streams
- t $HOME/US-UMB_ICN/run/clm1PT.1x1pt_US-UMB.stream.txt -l
> Buildconf/datm.input_data_list
And now run the script to export data to your machine
> ../ccsm_utils/Tools/check_input_data -export
Here we show running interactively
> ./US-UMB_ICN.generic_darwin_intel.run
```
Chapter 6. How to run PTCLM1.110726

Caution
Because of Bug 1364, when running this case as above we get a floating point error after reaching time-step 124 for the example exactly as above. Other machines or compilers probably won’t have this problem. See the models/1nd/clm/doc/KnownBugs (../KnownBugs) file for more information on this problem.

Warning
As documented in Bug 1368, spinning up the US-UMB site for a I2000CN compset gives zero Gross Primary Production (GPP). If the user wishes to use this site for CLM-CN, they’ll need to address this issue. See the models/1nd/clm/doc/KnownBugs (../KnownBugs) file for more information on this problem.

Adding data for use by PTCLM

PTCLM Group Site Lists

The "sitegroupname" option to PTCLM1.110726 looks for groups of sites in the files in the PTCLM_sitedata directory under the PTCLM directory. You can add new names available for this option including your own lists of sites, by adding more files in this directory. There are three files for each "sitegroupname": $SITEGROUP_sitedata.txt, $SITEGROUP_soildata.txt and $SITEGROUP_pftdata.txt (where $SITEGROUP is the name that would be entered as "sitegroupname" to PTCLM). Each file needs to have the same list of sites, but gives different information: site data, PFT data, and soil data respectively. Although the site codes need to be the same between the three files, the files do NOT have to be in the same order. Each file has a one-line header that lists the contents of each column which are separated by commas. The first column for each of the files is the "site_code" which must be consistent between the three files. The site code can be any unique character string, but in general we use the AmeriFlux site code.

Site data file: $SITEGROUP_sitedata.txt): The header for this file is:

    site_code,name,state,lon,lat,elev,startyear,endyear,alignyear

The columns: name, state, and elevation are informational only. Name is a longer descriptive name of the site, and state is the state for U.S. sites or country for non U.S. sites. The columns: lon and lat are the longitude and latitude of the location in decimal degrees. The last three columns are the start and ending year for the data and the align year for an 1850 case for the data. The align year is currently unused.

Soil data file: $SITEGROUP_soildata.txt): The header for this file is:
Chapter 6. How to run PTCLM

1.110726

The first three fields after "site_code" are currently unused. The only two that are used are the percent sand and clay columns to set the soil texture.

PFT data file: $SITEGROUP_pftdata.txt: The header for this file is:

```
site_code,pft_f1,pft_c1,pft_f2,pft_c2,pft_f3,pft_c3,pft_f4,pft_c4,pft_f5,pft_c5
```

This file gives the vegetation coverage for the different vegetation types for the site. The file only supports up to five PFT’s at the same time. The columns with "pft_f" are the fractions for each PFT, and the columns with "pft_c" is the integer index of the given PFT. Look at the pft-physiology file to see what the PFT index for each PFT type is.

**Dynamic Land-Use Change Files for use by PTCLM**

There is a mechanism for giving site-specific land-use change in PTCLM. Adding site specific files to the PTCLM_sitedata directory under PTCLM allows you to specify the change in vegetation and change in harvesting (for the CN model) for that site. Files are named: $SITE_dynpftdata.txt. There is a sample file for the US-Ha1 site called: US-Ha1_dynpftdata.txt. The file has a one-line header with the information that the file has, and then one-line for each year with a transition. The header line is as follows:

```
trans_year,pft_f1,pft_c1,pft_f2,pft_c2,pft_f3,pft_c3,pft_f4,pft_c4,pft_f5,pft_c5,har_vh1,har_vh2,har_sh1,har_sh2,har_sh3,graze,hold_harv,hold_graze
```

This file only requires a line for each year where a transition or harvest happens. As in the "pftdata" file above "pft_f" refers to the fraction and "pft_c" refers to the PFT index, and only up to five vegetation types are allowed to co-exist. The last eight columns have to do with harvesting and grazing. The last two columns are whether to hold harvesting and/or grazing constant until the next transition year and will just be either 1 or 0. This file will be converted by the PTCLM_sitedata/cnvrt_trnsyrs2_pftdymntxtfile.pl script in the PTCLM directory to a format that mksurfdata can read that has an entry for each year for the range of years valid for the compset in question.

**Converting AmeriFlux Data for use by PTCLM**


Here is a copy of the usage terms from the web-site on June/13/2011.

"The AmeriFlux data provided on this site are freely available and were furnished by individual AmeriFlux scientists who encourage their use. Please kindly inform the appropriate AmeriFlux scientist(s) of how you are using the data and of any publication plans. Please acknowledge the data source as a citation or in the acknowledgments if the data are not yet published. If the AmeriFlux
Chapter 6. How to run PTCLM

Principal Investigators (PIs) feel that they should be acknowledged or offered participation as authors, they will let you know and we assume that an agreement on such matters will be reached before publishing and/or use of the data for publication. If your work directly competes with the PI’s analysis they may ask that they have the opportunity to submit a manuscript before you submit one that uses unpublished data. In addition, when publishing, please acknowledge the agency that supported the research. Lastly, we kindly request that those publishing papers using AmeriFlux data provide preprints to the PIs providing the data and to the data archive at the Carbon Dioxide Information Analysis Center (CDIAC).

The above agreement applies to the "US-UMB" dataset imported into our repository as well, and Gil Bohrer is the PI on record for that dataset.

The CESM can NOT handle missing data, so we recommend using the "Level 4" Gap filled datasets. The fields will also need to be renamed. The "WS" column becomes "WIND", "PRE" becomes "PRECmms", "RH" stays as "RH", "TA" becomes "TBOT", "Rg" becomes "FSDS", "Rgl" becomes "FLDS", "PRESS" becomes "PSRF". "ZBOT" can just be set to the constant of "30" (m). The units of Temperature need to be converted from "Celsius" to "Kelvin" (use the value in SHR_CONST_TKFRZ in the file models/csm_share/shr/shr_const.F90 of 273.15. The units of Pressure also need to be converted from "kPa" to "Pa". LATIXY, and LONGXY should also be set to the latitude and longitude of the site. With data hourly or half-hourly the default settings will be fine. But, if the temporal frequency is less than that see Example 5-7 for an example of how to change it.

PTCLM transient example over a shorter time period

Example 6-5. Example of running PTCLM for transient land-use 1991-2006 for US-Ha1 on bluefire

This is an example of using PTCLM for Harvard Forest (AmeriFlux site code US-Ha1). In order to do this we would’ve needed to have converted the AmeriFlux data into NetCDF format as show in the the Section called Converting AmeriFlux Data for use by PTCLM section above. Also note that this site has a site-specific dynamic land-use change file for it PTCLM_sitedata/US-Ha1_dynpftdata.txt in the PTCLM directory and this file will be used for land-use change and harvesting rather than the global dataset.

> cd scripts/ccsm_utils/Tools/lnd/clm/PTCLM
> # We are going to use forcing data over 1991 to 2006, but we need to start with
> # a transient compset to do so, so we use the 20th Century transient: 1850-2000
> # Note: When creating the fpftdyn dataset for this site it will use the
> # PTCLM_sitedata/US-Ha1_dynpftdata.txt
> # file for land-use change and harvesting
> ./PTCLM.py -m bluefire -s US-Ha1 -d $MYCSMDATA --sitegroupname AmeriFlux
> -c I_1850-2000_CN
> > mkdir $MYCSMDATA/atm/datm7/CLM1PT_data/1x1pt_US-Ha1
> > cd $MYCSMDATA/atm/datm7/CLM1PT_data/1x1pt_US-Ha1
> # Copy data in NetCDF format to this directory, filenames should be YYYY-MM.nc
> # The fieldnames on the file should be:
> # FLDS,FSDS,LATIXY, LONGXY, PRECTmms,PSRF,RH,TBOT,WIND,ZBOT
> # With units
> # W/m2,W/m2,degrees_N,degrees_E,mm/s, Pa, s, K, m/s, m
> # The time coordinate units should be: days since YYYY-MM-DD 00:00:00
> > cd ..\..\..\..\..\..\US-Ha1_I_1850-2000_CN
> # We need to turn cold-start on, so it doesn’t expect an initial condition file
> # preferably, you would generate your own initial condition file and then use
> # the --finidat option to PTCLM to enter it
> > ./xmlchange -file env_conf.xml -id CLM_FORCE_COLDSTART --val on
> # Now we need to set the start date to 1991, and have it cycle forcing data
> # over 1991 to 2006

145
Chapter 6. How to run PTCLM

1.10726

> ./xmlchange -file env_conf.xml -id RUN_STARTDATE -val 1991-01-01
> ./xmlchange -file env_conf.xml -id DATM_CLMNCEP_YR_ALIGN -val 1991
> ./xmlchange -file env_conf.xml -id DATM_CLMNCEP_YR_END -val 2006
> ./xmlchange -file env_conf.xml -id CLM_NAMELIST_OPTS -val "\n  # Similarly for Nitrogen deposition data we cycle over: 1991 to 2006
> ./configure -case
> # We also need to change the DATM to run with aerosols over the 1991-2006 period
> cat << EOF > patch.diff
> *** datm.buildnml.csh.orig 2011-06-14 09:28:20.000000000 -0600
> --- datm.buildnml.csh 2011-06-14 09:28:57.000000000 -0600
> ***************
> *** 32,38 ****
> dataMode = 'CLMNCEP'
> domainFile = '$DOMAINFILE'
> streams = 'clm1PT.1x1pt_US-Ha1.stream.txt 1991 1991 2006 ',
> !   'presaero.stream.txt 1991 1991 2006'
> vectors = 'null','null'
> mapmask = 'nomask','nomask'
> mapalgo = 'nn','nn'
> --- 32,38 ----
> dataMode = 'CLMNCEP'
> domainFile = '$DOMAINFILE'
> streams = 'clm1PT.1x1pt_US-Ha1.stream.txt 1991 1991 2006 ',
> !   'presaero.stream.txt 1991 1991 2006'
> vectors = 'null','null'
> mapmask = 'nomask','nomask'
> mapalgo = 'nn','nn'
> EOF
> # Apply the above patch to the DATM build namelist file
> > patch Buildconf/datm.buildnml.csh patch.diff

A bit about the structure of PTCLM, what it does, and how it works

A large part of PTCLM just sets up the different options and does error checking on the options given. PTCLM then uses the options provided to use `create_newcase` to create a new case. It then queries both the case directory and/or the XML database (using `queryDefaultNamelist.pl` in `models/lnd/clm/bld`) and does other settings for the case. It then runs the different CLM tools in turn to create the necessary datasets and points to them in the case with the CLM_USRDAT_NAME option. It runs `mkgriddata`, `mksurfdata.pl`, and `mkdatadomain` as well as the `aerdepregrid.ncl` and `ndepregrid.ncl` NCL scripts. `mkgriddata` and `mksurfdata.pl` have template namelist files in the `scripts/ccsm_utils/Tools/lnd/clm/PTCLM/usr_files` directory. When running `mksurfdata.pl` it will use a `$SITE_dynpftdata.txt` in the `scripts/ccsm_utils/Tools/lnd/clm/PTCLM/sitedata` directory if it finds a `$SITE_dynpftdata.txt` in the `scripts/ccsm_utils/Tools/lnd/clm/PTCLM/sitedata` directory. It then runs the different `env*.xml` using `xmlchange` and creates an initial `user_nl_clm` filename. After PTCLM is run you can then make changes to the case by hand, and configure, build and run as normal.

There is a simple test script to test PTCLM. See the Section called Testing PTCLM use the PTCLM test script in Appendix C for more information on using it.
Chapter 7. Trouble Shooting Problems

In this chapter we give some guidance on what to do when you encounter some of the most common problems. We can’t cover all the problems that a user could potentially have, but we will try to help you recognize some of the most common situations. And we’ll give you some suggestions on how to approach the problem to come up with a solution.

In general you will run into one of three type of problems:

1. configure-time
2. build-time
3. run-time

You may also run into problems with create_newcase itself, or with the archiving scripts -- for those problems you should consult the CESM1.0.4 Scripts User’s Guide (http://www.cesm.ucar.edu/models/cesm1.0/cesm).

Trouble with Configuration

The first type of problem happens when you invoke the configure -case command. This indicates there is something wrong with your template files, or input datasets, or the details of what you are trying to configure the model to do. There’s also a trouble-shooting chapter in the CESM1.0.4 Scripts User’s Guide (http://www.cesm.ucar.edu/models/cesm1.0/cesm). Many of the problems with configuration can be resolved with the guidelines given there. Here we will restrict ourselves to problems from the CLM or DATM templates or input files.

Example 7-1. Example of configure problem with missing datasets

```bash
> ./create_newcase -case T31rcp6 -res T31_g37 -compset IRCP60CN \
-mach bluefire
> ./configure -case
```

The following is what is displayed to the screen.

```
Generating resolved namelist, prestage, and build scripts
configure done.
adding use_case 1850-2100_rcp6_transient defaults for var clm_demand with val fpftdyn
adding use_case 1850-2100_rcp6_transient defaults for var clm_start_type with val startup
adding use_case 1850-2100_rcp6_transient defaults for var model_year_align_ndep with val 1850
adding use_case 1850-2100_rcp6_transient defaults for var rcp with val 6
adding use_case 1850-2100_rcp6_transient defaults for var sim_year with val 1850
adding use_case 1850-2100_rcp6_transient defaults for var stream_year_first_ndep with val 1850
adding use_case 1850-2100_rcp6_transient defaults for var stream_year_last_ndep with val 2100
adding use_case 1850-2100_rcp6_transient defaults for var use_case_desc with val Simulate transient land-use, aerosol and Nitrogen deposition changes with historical data from 1850 to 2005 and then with the RCP6 scenario from AIM
build-namelist - No default value found for fpftdyn.
ERROR: generate_resolved.csh error for lnd template
```

147
Chapter 7. Trouble Shooting Problems

configure error: configure generated error in attempting to created resolved scripts

The important thing to note here is the line:

ERROR: generate_resolved.csh error for lnd template

which tells us that the problem is in the land template. It may also indicate problems in one of the other templates (atm, ccsm, cpl, glc, ice, or ocn), in which case you should consult the appropriate model user’s guide, and examine the given template file in Tools/Templates. For more information on working with template files see Appendix A.

In the example above, it’s obvious that the problem is coming from the CLM build-namelist, in other situations it might not be so obvious where the problem is occurring. In such cases it might be useful to add a “set echo” command to the top of the template file so that each command in the template will be echoed to the screen and you can see what is happening and where the error is occurring.

set echo

In the example, the error is that the CLM XML database does NOT have a fpftdyn for the given resolution, rcp scenario and ocean mask. That means you will need to create the file and then supply the file into your case. See Chapter 2 for more information on creating files, and see Chapter 3 for more information on adding files to the XML database. Alternatively, you can provide the file to your case by creating a user namelist as shown in the Section called Configure time User Namelist in Chapter 1.

Note: The two most common problems from your CLM template will be errors from the CLM configure or build-namelist. For more information on these scripts see: the Section called More information on the CLM configure script in Chapter 1 and the section on CLM_BLDNML_OPTS.

Trouble with Building

Here’s an example of running the build for a case and having it fail in the land model build. As you can see it lists which model component is being built and the build log for that component.

CCSM BUILDEXE SCRIPT STARTING
  - Build Libraries: mct pio csm_share
Sat Jun 19 21:21:19 MDT 2010 /ptmp/erik/test_build/mct/mct.bldlog.100619-212107
Sat Jun 19 21:23:18 MDT 2010 /ptmp/erik/test_build/csm_share/csm_share.bldlog.100619-212107
Sat Jun 19 21:24:00 MDT 2010 /ptmp/erik/test_build/run/cpl.bldlog.100619-212107
Sat Jun 19 21:24:00 MDT 2010 /ptmp/erik/test_build/run/atm.bldlog.100619-212107
ERROR: clm.buildexe.csh failed, see /ptmp/erik/test_build/run/ind.bldlog.100619-212107
ERROR: cat /ptmp/erik/test_build/run/ind.bldlog.100619-212107

148
Trouble with Running

Tracking down problems while the model is running is much more difficult to do than configure or build problems. In this section we will give some suggestions on how to find run time problems. Below we show the log file results of a job that aborted while running.

In the next section we will talk about using the different log files to track down problems, and find out where the problem is coming from. In the section after that we give some general advice on debugging problems and some suggestions on ideas that may be helpful to track the problem down. Some of the examples below are from the models/lnd/clm/doc/KnownBugs file.

Tracking Problems by Querying Log Files

The first thing to do when tracking down problems is to query the different log files to see if you can discover where the problem occurs, and any error messages about it. It’s important to figure out if the problem comes in at initialization or in the run phase of the model, and in which model component the problem happens. There are different log files for the different major components, and they all end with the date and time in YYMMDD-HHMMSS format (2-digit: year, month, day, hour minute and second). When the model runs to completion the log files will be copied to the logs directory in the script directory, but when the model fails they will remain in the run directory. Here’s an example list of log files from an “I” case where the model dies in the land model initialization. For “I” cases the sea-ice and ocean components are just stubs and don’t create log files (and unless running with the active land-ice model "glc" log files won’t be created either).

atm.log.100620-182358
ccsm.log.100620-182358
cpl.log.100620-182358
lnd.log.100620-182358

The coupler log file

The first log file to check is the coupler log file so that you can see where the model dies and which model component it fails in. When the model dies at initialization the last model component listed is the component that failed.

Example of a case that fails in the CLM land model initialization.
Chapter 7. Trouble Shooting Problems

The ccsm log file

The ccsm log files are to some extent the "garbage collection" of log output. The CLM sends its output from its master processor, but sends other output and possibly errors to the ccsm log file. Because of this, often error messages are somewhere in the ccsm log file. However, since there is so much other output it may be difficult to find. For example, here is some output from an older version of CESM (CESM1.0.2) where the RTM river routing file (before it was converted to NetCDF) was not provided and the error on the open statement for the file was embedded near the end of the ccsm log file.

Although the example is from an earlier version of the model it still serves to illustrate finding problems from the ccsm log file.

When working with the ccsm log file, for a run-time problem, you will need to be able to separate its output into three categories: pre-crash, crash, and post-crash. The pre-crash section is everything that is normal output for good operation of the model. The crash section is the section where the model dies and reports on the actual problem. The post-crash section is the cleanup and finalization after the model dies. The most important part of this of course is the crash section. The tricky part is distinguishing it from the other sections. Also because the ccsm log file most likely has duplicated output from multiple processors it is even more difficult to distinguish the different sections and to some extent the sections may be intertwined, as different processors reach the different sections at different times. Because of this reducing the number of processors for your simulation may help you sort out the output in the file (see the Section called Run with a smaller set of processors). Also much of the output from the ccsm log file are system level information having to do with MPI multiprocessing. Usually you can ignore this information, but it makes it more difficult to trudge through.

Sometimes the ccsm log file is the ONLY file available, because the model terminates early in initialization. In this case understanding the output in the ccsm log file becomes even more important. This also indicates the model did NOT advance far enough to reach the initialization of the individual model components. This may mean that the initialization of the multiprocessing for MPI and/or OpenMP failed, or that the reading of the driver namelist file "drv_in" failed.
Here we show those three sections for a ccsm log file where a two task job failed on reading the namelist file. For a typical job with many tasks similar sections of this will be repeated not just twice but for each task and hence make it harder to read.

Pre-crash section of the ccsm log file

```
ATTENTION: 0031-386 MP_INSTANCES setting ignored when LoadLeveler is not being used.
ATTENTION: 0031-386 MP_INSTANCES setting ignored when LoadLeveler is not being used.
ATTENTION: 0031-378 MP_EUIDEVICE setting ignored when LoadLeveler is not being used.
ATTENTION: 0031-386 MP_INSTANCES setting ignored when LoadLeveler is not being used.
0:INFO: 0031-724 Executing program: </usr/local/lsf/7.0/aix5-64/bin/lsnrt_run>
1:INFO: 0031-724 Executing program: </usr/local/lsf/7.0/aix5-64/bin/lsnrt_run>
0:/contrib/bin/ccsm_launch: process 401894 bound to logical CPU 0 on host be0310en.ucar.edu ...
1:/contrib/bin/ccsm_launch: process 439264 bound to logical CPU 1 on host be0310en.ucar.edu ...
0:INFO: 0031-619 64bit(us, Packet striping on) ppe_rmas MPCI_MSG: MPI/MPCI library was compiled on Wed Aug 5 13:36:06 2009
0:
1:LAPI version #14.26 2008/11/23 11:02:30 1.296 src/rsct/lapi/lapi.c, lapi, rsct_rpt53, rpt53s004a 09/04/29 64bit(us) library compiled on Wed Apr 29 15:30:42 2009
1:
1:LAPI is using lightweight lock.
0:LAPI version #14.26 2008/11/23 11:02:30 1.296 src/rsct/lapi/lapi.c, lapi, rsct_rpt53, rpt53s004a 09/04/29 64bit(us) library compiled on Wed Apr 29 15:30:42 2009
0:
0:LAPI is using lightweight lock.
0:Use health ping for failover/recovery
0:Use health ping for failover/recovery
0:Initial communication over instance 2.
1:Initial communication over instance 0.
1:IB RDMA initialization completed successfully
1:The MPI shared memory protocol is used for the job
0:IB RDMA initialization completed successfully
0:IB: job ID for this job is: 1684890719
0:The MPI shared memory protocol is used for the job
0:The MPI shared memory protocol is used for the job
0:(seq_comm_setcomm) initialize ID (7 GLOBAL) pelist = 0 1 1 (npes = 2) (nthreads = 1)
0:(seq_comm_setcomm) initialize ID (2 ATM) pelist = 0 1 1 (npes = 2) (nthreads = 1)
0:(seq_comm_setcomm) initialize ID (1 LND) pelist = 0 1 1 (npes = 2) (nthreads = 1)
0:(seq_comm_setcomm) initialize ID (4 ICE) pelist = 0 1 1 (npes = 2) (nthreads = 1)
0:(seq_comm_setcomm) initialize ID (5 GLC) pelist = 0 1 1 (npes = 2) (nthreads = 1)
0:(seq_comm_setcomm) initialize ID (3 OCN) pelist = 0 1 1 (npes = 2) (nthreads = 1)
0:(seq_comm_setcomm) initialize ID (6 CPL) pelist = 0 1 1 (npes = 2) (nthreads = 1)
0:(seq_comm_setcomm) initialize ID (8 CPLATM) join IDs = 6 2 (npes = 2) (nthreads = 1)
0:(seq_comm_setcomm) initialize ID (9 CPLND) join IDs = 6 1 (npes = 2) (nthreads = 1)
0:(seq_comm_setcomm) initialize ID (10 CPLICE) join IDs = 6 4 (npes = 2) (nthreads = 1)
0:(seq_comm_setcomm) initialize ID (11 CPLLOCN) join IDs = 6 3 (npes = 2) (nthreads = 1)
0:(seq_comm_setcomm) initialize ID (12 CPLGLC) join IDs = 6 5 (npes = 2) (nthreads = 1)
0:(seq_comm_printcomms) ID layout : global pes vs local pe for each ID
0: gpe LND ATM OCN ICE GLC CPL GLOBAL CPLATM CPLLND CPLICE CPLLOCN CPLGLC nthrds
0: --- ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------
0: 0 : 0 0 0 0 0 0 0 0 0 0 0 1
1: 1 : 1 1 1 1 1 1 1 1 1 1 1 1
1:
0: (t_initf) Read in prof_inparm namelist from: drv_in
1: (seq_io_init) cpl_io_stride, iotasks or root out of bounds - resetting to defaults 4 0 1
0: piolib_mod.f90 1353 1 2 1 2
1: piolib_mod.f90 1353 1 2 1 2
0:pio_support::pio_die:: myrank= 0 : ERROR: piolib_mod.f90: 1354 : not enough procs for the stride
1: pio_support::pio_die:: myrank= 1 : ERROR: piolib_mod.f90: 1354 : not enough procs for the stride
```

Crash section of the ccsm log file

```
Traceback:
0:
1: Traceback:
0: Offset 0x000000c4 in procedure __pio_support_NM0D_piodie, near line 88 in file pio_support.F90.in
1: Offset 0x000000c4 in procedure __pio_support_NM0D_piodie, near line 88 in file pio_support.F90.in
0: Offset 0x000000fd0 in procedure __pio_support_NM0D_init, near line 1354 in file pioilib_mod.F90
1: Offset 0x000000fd0 in procedure __pio_support_NM0D_init, near line 1354 in file pioilib_mod.F90
0: Offset 0x00000398 in procedure __seq_io_mod_NM0D.seq_io_init, near line 247 in file /gpfs/proj2/fis/cgd/home/erik/clm_trunk/models/drv/shr/seq_io_mod.f90
0: Offset 0x00000398 in procedure __seq_io_mod_NM0D.seq_io_init, near line 247 in file /gpfs/proj2/fis/cgd/home/erik/clm_trunk/models/drv/shr/seq_io_mod.f90
0: Offset 0x0001aa88 in procedure ccsm_driver, near line 465 in file /gpfs/proj2/fis/cgd/home/erik/clm_trunk/models/drv/driver/ccsm_driver.f90
```

151
Chapter 7. Trouble Shooting Problems

Post-crash section of the ccsm log file

1: Communication statistics of task 1 is associated with task key: 1684890719_1
0: Communication statistics of task 0 is associated with task key: 1684890719_0
0:
1: Running: ./ccsm.exe
0:
1: Please wait...
0:
1: Running: ./ccsm.exe
1:
1: Please wait...
1:
1: Memory usage for ./ccsm.exe (task # 0) is: 198852 KB. Exit status: 134. Signal: 0
1:
INFO: 0031-656 I/O file STDOUT closed by task 0
0:
INFO: 0031-656 I/O file STDERR closed by task 0
0:
ERROR: 0031-250 task 0: IOT/Abort trap
INFO: 0031-639 Exit status from pm_respond = 0
ATTENTION: 0031-386 MP_INSTANCES setting ignored when LoadLeveler is not being used.
Job /usr/local/lsf/7.0/aix5-64/bin/poejob /contrib/bin/ccsm_launch /contrib/bin/job_memusage.exe ./ccsm.exe

TID HOST_NAME COMMAND_LINE STATUS TERMINATION_TIME
===== ========== ================ ======================= ===================
00000 be0310en /contrib/bin/ccs Exit (134) 08/31/2010 12:32:57
00001 be0310en /contrib/bin/ccs Exit (134) 08/31/2010 12:32:57

The CLM log file

Of course when you are working with and making changes to CLM, most of your focus will be on the
CLM log file and the errors it shows. As already pointed out if you don’t see errors in the
lnd.log.*
file you should look in the ccsm.log.* to see if any errors showed up there.

Here’s an example of the lnd.log.* file when running PTS_MODE with initial conditions (this is bug
1025 in the models/lnd/clm/doc/KnownLimitationss (../KnownLimitations) file).

Successfully initialized variables for accumulation

reading restart file 1200000_c16_g16_c100503.clm2.r.0001-01-01-00000.nc
Reading restart dataset
ERROR - setlatlon.F: Cant get variable dim for lat or lsmlat
ENDRUN: called without a message string

152
Chapter 7. Trouble Shooting Problems

The DATM log file

When working with "I cases" the second most common problems after CLM problems are problems with the data atmosphere model. So examining the atm.log.* is important.

Here’s an example of a problem that occurs when the wrong prescribed aerosol file is given to a pt1_pt1 simulation.

```
{datm_comp_init} atm mode = CLMNCEP
{shr_strdata_init} calling shr_dmodel_mapSet for fill
{shr_strdata_init} calling shr_dmodel_mapSet for remap
{'shr_map_getWts'} ERROR: yd outside bounds 19.50000000000000000
{shr_sys_abort} ERROR: ('shr_map_getWts') ERROR yd outside 90 degree bounds
{shr_sys_abort} WARNING: calling shr_mpi_abort() and stopping
```

The batch log files

The names of the batch log files will depend on the batch system of the machine that is being used. They will normally be in the script directory. Usually, they don’t contain important information, but they are a last resort place to look for error messages. On the NCAR IBM system "bluefire" the batch files are called with names that start with "poe" and then either "stderr" or "stdout", with the job number at the end.

General Advice on Debugging Run time Problems

Here are some suggestions on how to track down a problem while running. In general if the problem still occurs for a simpler case, it will be easier to track down.

1. **Run in DEBUG mode**
2. **Run with a smaller set of processors**
3. **Run in serial mode with a single processor**
4. **Run at a lower resolution**
5. **Run a simpler case**
6. **Run with a debugger**

Run in DEBUG mode

The first thing to try is to run in DEBUG mode so that float point trapping will be triggered as well as array bounds checking and other things the compiler can turn on to help you find problems. To do this edit the env_build.xml file and set DEBUG to TRUE as follows:

```
> ./xmlchange -file env_build.xml -id DEBUG -val TRUE
```
Chapter 7. Trouble Shooting Problems

Run with a smaller set of processors

Another way to simplify the system is to run with a smaller set of processors. You will need to clean the configure and edit the `env_mach_pes.xml`. For example, to run with four processors:

```bash
> ./configure -cleanall
> ./xmlchange -file env_mach_pes.xml -id NTASKS_ATM -val 4
> ./xmlchange -file env_mach_pes.xml -id NTASKS_LND -val 4
> ./xmlchange -file env_mach_pes.xml -id NTASKS_ICE -val 4
> ./xmlchange -file env_mach_pes.xml -id NTASKS_OCN -val 4
> ./xmlchange -file env_mach_pes.xml -id NTASKS_CPL -val 4
> ./xmlchange -file env_mach_pes.xml -id NTASKS_GLC -val 4
> ./configure -case
```

Another recommended simplification is to run without threading, so set the NTHRDS for each component to "1" if it isn’t already. Sometimes, multiprocessing problems require a certain number of processors before they occur so you may not be able to debug the problem without enough processors. But, it’s always good to reduce it to as low a number as possible to make it simpler. For threading problems you may have to have threading enabled to find the problem, but you can run with 1, 2, or 3 threads to see what happens.

Run in serial mode with a single processor

Simplifying to one processor removes all multi-processing problems and makes the case as simple as possible. If you can enable USE_MPI_SERIAL you will also be able to run interactively rather than having to submit to a job queue, which sometimes makes it easier to run and debug. If you can use USE_MPI_SERIAL you can also use threading, but still run interactively in order to use more processors to make it faster if needed.

```bash
> ./configure -cleanall
Set tasks and threads for each component to 1
You could also set threads to something > 1 for speed, but still
run interactively if threading isn’t an issue.
> ./xmlchange -file env_mach_pes.xml -id NTASKS_ATM -val 1
> ./xmlchange -file env_mach_pes.xml -id NTHRDS_ATM -val 1
> ./xmlchange -file env_mach_pes.xml -id NTASKS_LND -val 1
> ./xmlchange -file env_mach_pes.xml -id NTHRDS_LND -val 1
> ./xmlchange -file env_mach_pes.xml -id NTASKS_ICE -val 1
> ./xmlchange -file env_mach_pes.xml -id NTHRDS_ICE -val 1
> ./xmlchange -file env_mach_pes.xml -id NTASKS_OCN -val 1
> ./xmlchange -file env_mach_pes.xml -id NTHRDS_OCN -val 1
> ./xmlchange -file env_mach_pes.xml -id NTASKS_CPL -val 1
> ./xmlchange -file env_mach_pes.xml -id NTHRDS_CPL -val 1
> ./xmlchange -file env_mach_pes.xml -id NTASKS_GLC -val 1
> ./xmlchange -file env_mach_pes.xml -id NTHRDS_GLC -val 1
If mpi-serial capability is available on the machine you are using
set USE_MPI_SERIAL to true so that you can run interactively
> ./xmlchange -file env_conf.xml -id USE_MPI_SERIAL -val TRUE
> ./configure -case
Then build your case
And finally run, by running the *.run script interactively
(If you were able to set USE_MPI_SERIAL to true)
```
Run at a lower resolution

If you can create a new case running at a lower resolution and replicate the problem it may be easier to solve. This of course requires creating a whole new case, and trying out different lower resolutions.

Run a simpler case

Along the same lines, you might try running a simpler case, trying another compset with a simpler setup and see if you can replicate the problem and then debug from that simpler case. Again, of course you will need to create new cases to do this.

Run with a debugger

Another suggestion is to run the model with a debugger such as: dbx, gdb, or totalview. Often to run with a debugger you will need to reduce the number of processors as outlined above. Some debuggers such as dbx will only work with one processor, while more advanced debuggers such as totalview can work with both MPI tasks and OMP threads. Even simple debuggers though can be used to query core files, to see where the code was at when it died (for example using the where in dbx for a core file can be very helpful. For help in running with a debugger you will need to contact your system administrators for the machine you are running on.
Appendix A. Editing Template Files Before Configure

The last kind of customization that you can do for a case, before configure is run is to edit the templates. The CLM template is in models/lnd/clm/bld/clm.cpl7.template, the DATM template is in models/atm/datm/bld/datm.cpl7.template, and the driver templates are in the models/drv/bld directory and are named: ccsm.template and cpl.template. When a case is created they are also copied to the Tools/Templates directory underneath your case. If you want to make changes that will impact all your cases, you should edit the template files under the models directory, but if you want to make a change ONLY for a particular case you should edit the template under that specific case.

Note: Editing the template files is NOT for the faint of heart! We recommend this ONLY for experts! It's difficult to do because the template is a script that actually creates another script. So part of the script is echoing the script to be created and part of it is a script that is run when “configure -case” is run. As a result any variables in the part of the script that is being echoed have to be escaped like this:

```bash
\$VARIABLE
```

But, in other parts of the script that is run, you can NOT escape variables. So you need to understand if you are in a part of the script that is echoing the script to be created, or in the part of the script that is actually run.

If you can customize your case using: compsets, env_*.xml variables, or a user namelist, as outlined in Chapter 1 you should do so. The main reason to actually edit the template files, is if you are in a situation where the template aborts when you try it run it when "configure -case" is run. The other reason to edit the template is if you are CLM developer and need to make adjustments to the template because of code or script updates. An example of modifying the DATM template is in Example 4-9 where sed is used to modify the path for CPLHIST3HrWx data.

Outline of the CLM template

The outline of the CLM template is as follows:

```bash
set up options for clm configure and then run clm configure
$CODEROOT/lnd/clm*/bld/configure <options>
set up options for clm build-namelist and then run clm build-namelist
$CODEROOT/lnd/clm*/bld/build-namelist <options>
echo the $CASEBUILD/clm.buildnml.csh script out
cat ! $CASEBUILD/clm.buildnml.csh << EOF1
NOTE: variables in this section must be escaped
EOF1
Remove temporary namelist files
echo the $CASEBUILD/clm.buildexe.csh script out
cat ! $CASEBUILD/clm.buildexe.csh << EOF2
NOTE: variables in this section must be escaped
EOF2
Remove temporary configure files
```

156
Outline of the DATM template

The outline of the DATM template is as follows:

# Check $GRID to set the $DOMAINFILE and $DOMAINPATH

# Check DATM_PRESAERO to set the prescribed aerosol option
# If CLM_USRDAT_NAME is set and $DOMAINFILE is NOT -- set it by CLM_USRDAT_NAME
# Ensure $DOMAINFILE is set or else abort

#------------------------------------------------------------------------------------------------------------------
# Create resolved prestage data script
#------------------------------------------------------------------------------------------------------------------
cat >! $CASEBUILD/datm.buildnml.csh << EOF
# NOTE: variables in this section must be escaped
EOF

# Major if blocks look at DATM_MODE:
# the if blocks setup streams and run Tools/build_streams to create stream files
#----- CLM_QIAN mode ----------------------------------------------------------
else if ($DATM_MODE == "CLM_QIAN") then
  # Customize CLM_QIAN options here
  # A.) Setup datm_atm_in namelist
  cat >! $CASEBUILD/datm.buildnml.csh << EOF
  cat >! datm_atm_in << EOF
  # NOTE: variables in this section must be escaped
  EOF
  EOF
  # B.) Setup options to build_streams
  ...
  ...

#----- CLM1PT mode ----------------------------------------------------------
else if ($DATM_MODE == "CLM1PT") then
  # Customize CLM1PT options here
  # A.) Setup datm_atm_in namelist
  cat >! $CASEBUILD/datm.buildnml.csh << EOF
  cat >! datm_atm_in << EOF
  # NOTE: variables in this section must be escaped
  EOF
  EOF
  # B.) Setup options to build_streams
  ...
  ...

#----- CPLHIST 3-hourly time-averaging mode
else if ($DATM_MODE == "CPLHIST3HrWx") then
  # Customize CPLHIST options here
  # A.) Setup datm_atm_in namelist
  cat >! $CASEBUILD/datm.buildnml.csh << EOF
  cat >! datm_atm_in << EOF
  # NOTE: variables in this section must be escaped
  EOF
  EOF
  # B.) Setup options to build_streams
  ...
  ...

else if ($DATM_MODE == "cwp3hrs") then
  # Customize cwp3hrs options here
  # A.) Setup datm_atm_in namelist
  cat >! $CASEBUILD/datm.buildnml.csh << EOF
  cat >! datm_atm_in << EOF
  # NOTE: variables in this section must be escaped
  EOF
  EOF
  # B.) Setup options to build_streams
  ...
  ...

else if ($DATM_MODE == "CPLHIST3HrWx") then
  # Customize CPLHIST options here
  # A.) Setup datm_atm_in namelist
  cat >! $CASEBUILD/datm.buildnml.csh << EOF
  cat >! datm_atm_in << EOF
  # NOTE: variables in this section must be escaped
  EOF
  EOF
  # B.) Setup options to build_streams
  ...
  ...

else:
  # Customize CPLHIST options here
  # A.) Setup datm_atm_in namelist
  cat >! $CASEBUILD/datm.buildnml.csh << EOF
  cat >! datm_atm_in << EOF
  # NOTE: variables in this section must be escaped
  EOF
  EOF
  # B.) Setup options to build_streams
  ...
  ...

EOF
Adding a new DATM_MODE to the DATM template

The steps to adding a new DATM_MODE

1. Add a new "if" block to the DATM template

   As you can see from the Section called Outline of the DATM template above there are major "if" blocks for the different DATM_MODE's. So adding a new DATM_MODE means adding a new "if" block. The two major parts of each DATM_MODE block are:
   - Setup datm_atm_in namelist
   - Setup options to build_streams

2. In the "if" block create the datm_atm_in namelist

   See the Section called Customizing the DATM Namelist and Streams files in Chapter 1 for some notes about the DATM namelist and streams files. That and the DATM User’s Guide (http://www.cesm.ucar.edu/models/cesm1.0/data8/data8_doc/book1.html) should give you guidance on how to setup the namelist for your case.

3. In the "if" block create options to and call build_streams
The next part of the "if" block in the DATM template file to work with is the call to `build_streams`. You may need to add additional options to it. You may also need to call it multiple times for multiple streams. You will also likely need to add a new source option to it with the ".-s" option. For more information on `build_streams` do the following.

Example A-1. Getting help with `build_streams` for DATM

```
> scripts/ccsm_utils/Tools/build_streams -help
```

The output of the above command is:

**SYNOPSIS**

```
build_streams [options]
```

**REQUIRED OPTIONS:**

- `--datasource "source"` [or `-s`] Use given data source type. 
- `--model "name"` [or `-m`] Give the model type name (cice datm dlnd dice docn) and use the appropriate model template file. 
- `--template "filename"` [or `-t`] Full path name to the input streams template file to use. 

**OPTIONS THAT MAY BE REQUIRED (depending on input template and datasources):**

- `--case "casename"` [or `-c`] Replace any template case indicators (%c see below) with this casename.
- `--domain "filename"` [or `-do`] Use given domain filename for domain. 
- `--dompath "directory"` [or `-dp`] Use given domain filepath for domain files. 
- `--filepath "directory"` [or `-p`] Full path to where datafiles are (required when template uses %p). 
- `--res "resolution"` [or `-r`] Resolution for filenames if source in template is resolution dependent. 
- `--yearfirst "year"` [or `-b`] The first year to cycle input datasets over. 
- `--yearlast "year"` [or `-e`] The last year to cycle input datasets over. 

**OPTIONS:**

- `--csmdata "directory"` Give input ccsm inputdata directory. (replaces %d used in template) 
- `--fexists` Check that the domain and filenames indicated by the output streams file actually exist. 
- `--filenames "file_or_indicator"` Use input filenames string for filenames. 
- `--outfile "filename"` [or `-o`] Output streams file to create. (default send to stdout) 
- `--verbose` [or `-v`] Turns on verbose printing mode. 

4. Add new streams templates to the DATM `datm.template.streams.xml` file
As part of modifying the behavior of **build_streams** you will also have to edit the models/atm/datm7/bld/datm.template.streams.xml file as well (or the local version in your `$CASENAME/Tools/Templates` directory for a particular case). The template is an XML file much like the output streams file, but there are attributes to distinguish which fields will be used based on things like: RESOLUTION or datasource. And there are filename indicators (starting with a "%") that get translated into various things such as:

- `%c` = Case (from above -case command line option)
- `%do` = Use domain file
- `%y` = Year (through range given from begyear to endyear)
- `%ym` = Year-Month (all 12 months through year range)
- `%6ym` = Like %ym but 6 digit year (ie. YYYYMM). (can replace the 6 with any digit 1-9)

5. Add a new valid_value to the config_definition.xml file in scripts.

Adding a new DATM_MODE also requires adding a new valid_value to scripts/ccsm_utils/Case.template/config_definition.xml. This enables the scripts to recognize the new value as a valid option to DATM_MODE in the env_conf.xml file.
Appendix B. Using the Script `runinit_ibm.csh` to both Run CLM and Interpolate Datasets

The script `runinit_ibm.csh` can be used on the NCAR bluefire machine to run CLM to create a template file and then run `interpinic` and do this over a variety of standard resolutions. By default it is setup to loop over the following resolutions:

```bash
foreach res ("1.9x2.5" "10x15" "4x6" "0.9x1.25" "2.5x3.33" "0.47x0.63" "48x96")
```

It is also only setup to run CLMCN and only particular masks for each resolution. But, the script can be modified by the user to run over whatever list you would like it to. It is also hooked up to the build-namelist XML database, so will only use the datasets that are part of the database, see Chapter 3 to see how to add files to the database. The script runs CLM only using OpenMP threading and as such can be run interactively, but it can also be submitted to the batch que.
Appendix C. Scripts for testing CLM

Technically, you could use the customization we gave in Chapter 1 to test various configuration and namelist options for CLM. Sometimes, it’s also useful to have automated tests though to see that restarts give exactly the same results as without a restart. It’s also useful to have automated tests to run over a wide variety of configurations, resolutions, and namelist options. To do that we have several different types of scripts set up to make running comprehensive testing of CLM easy. There are two types of testing scripts for CLM. The first are the CESM test scripts, which utilize the `create_newcase` scripts that we showed how to use in this User’s Guide. The second are a set of stand-alone scripts that use the CLM `configure` and `build-namelist` scripts to build and test the model as well as testing the CLM tools as well. Below we will go into further details of how to use both methods.

Testing CLM Using the CESM Test Scripts

We first introduce the test scripts that work for all CESM components. We will use the `create_test` and then the `create_test_suite` scripts. The `create_test` runs a specific type of test, at a given resolution, for a given compset using a given machine. There is a list of different tests, but the "ERI" tests do several things at once, running from startup, as well as doing exact branch and restart tests. So to run "ERI" testing at 2-degree with the I1850CN compset on bluefire you do the following.

```
> cd scripts
> ./create_test -testname ERI.f19_g16.I1850CN.bluefire
> cd ERI.f19_g16.I1850CN.bluefire.$id
> ./ERI.f19_g16.I1850CN.bluefire.$id.build
> ERI.f19_g16.I1850CN.bluefire.$id.submit
```

When the test is done it will update the file `TestStatus` with either a PASS or FAIL message.

To run a suite of tests from a list of tests with syntax similar to above you use `create_test_suite` as follows passing it a ASCII list of tests. There are already some test lists in the `scripts/ccsm_utils/Testlists` directory a few of which are specific to CLM. To run for the CLM bluefire test list, on bluefire, you would do the following:

```
> cd scripts
> ./create_test_suite -input_list ccsm_utils/Testlists/bluefire.clm.auxtest
Submit the suite of tests (note $id refers to the integer job number for this job)
> ./cs.submit.$id.bluefire
Later check the tests with...
> ./cs.status.$id
The above will give a PASS or FAIL message for each test.
```

For more information on doing testing with the CESM scripts see the CESM1.0.4 User’s Guide (http://www.cesm.ucar.edu/models/cesm1.0/cesm) on testing.

Testing CLM Using the CLM Stand-Alone Testing Scripts

In the `models/lnd/clm/test/system` directory there is a set of test scripts that is specific to stand-alone CLM. It does testing on configurations harder to test for in the CESM test scripts, and also
Appendix C. Scripts for testing CLM

allows you to test the CLM tools such as mkgriddata and mksurfdata. The main driver script is called test_driver.sh and it can run both interactively as well as being submitted to the batch queue. Like other scripts you can get help on it by running the ".help" option as: test_driver.sh -help. There is also a README file that gives details about environment variables that can be given to test_driver.sh to change its operation.

To submit a suite of stand-alone tests to the batch que:

```bash
> cd models/lnd/clm/test/system
> ./test_driver.sh
```

You can also run tests interactively:

```bash
> cd models/lnd/clm/test/system
> ./test_driver.sh -i
```

The output of the help option is as follows:

```
ERROR: machine harmon.cgd.ucar.edu not currently supported
```

A table of the list of tests and the machines they are run on is available from: test_table.html
(../../test/system/test_table.html)

Testing PTCLM use the PTCLM test script

There is a simple test script for PTCLM called testcases.csh in the PTCLM directory (scripts/ccsm_utils/Tools/lnd/clm/PTCLM). The test script is setup to run on the machines: bluefire, scd data machines, edinburgh, lynx, yong, and jaguar. You simply run the script interactively. The script will write out the status of tests to a file called: tc.job#.status.

There are a few environment variables that can be used with testcases.csh to change its operation.

- CESM_ROOT: To test with a separate root to CESM code set this env variable to the root directory to use.
- CLM_SOFF: If set to TRUE -- stop on first failed test rather than continuing to run.
- CLM_RETAIN_FILES: If set to FALSE -- cleanup tools build first.
- DEBUG: If set to TRUE -- setup cases, but do not build or run.
Appendix D. Building the Users-Guide Documentation for CLM

All of the documentation for CLM can be built using GNU Makefiles that are available in the appropriate directories. The Makefiles require the following utilities: `docbook2html`, `docbook2pdf`, `protex`, and `latex2html`.

To build the Users Guide for CLM (requires docbook):

```
> cd models/lnd/clm/doc/UsersGuide
> gmake
```

Note, that when the Users-Guide is built it will get output from other CLM utilities that by nature abort, and hence stop the make from continuing. However, this is expected so you should simply run `gmake` again until it either completes or comes upon a legitimate issue. Here is what a sample warning looks like when `gmake` is run.

```
The following line will fail in the make as it calls die -- but that is expected
Check that the output config_help.tlog is good and redo your make
../../bld/configure -help >&' config_help.tlog
make: *** [config_help.tlog] Error 255
```

To build the Code Reference Guide for CLM (requires `protex` and `latex2html`). The make here uses a `Filepath` file that points to the list of directories that you want `protex` to run over. You should examine this file and make sure it is appropriate for what you need to do, before running the make.

```
> cd models/lnd/clm/doc/CodeReference
> gmake
```

To build the table of tests for the CLM test suite. The make here runs a UNIX shell script to create a html table of the list of tests run on the different machines from the CLM test suite.

```
> cd models/lnd/clm/test/system
> gmake
```