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Chapter 1

Introduction

This report presents the details of the governing equations, physical parameterizations, and nu-
merical algorithms defining the version of the NCAR Community Atmosphere Model designated
CAM 3.0. The material provides an overview of the major model components, and the way in
which they interact as the numerical integration proceeds. Details on the coding implementa-
tion, along with in-depth information on running the CAM 3.0 code, are given in a separate
technical report entitled “User’s Guide to NCAR CAM 3.0” [Kluzek et al., 2002]. As before, it
is our objective that this model provide NCAR and the university research community with a
reliable, well documented atmospheric general circulation model. This version of the CAM 3.0
incorporates significant improvements to the physics package (e.g. generalized cloud overlap for
radiation calculations), new capabilities such as the incorporation of thermodynamic sea ice, and
a number of enhancements to the implementation (e.g. clean separation between physics and
dynamics). We believe that collectively these improvements provide the research community
with a significantly improved atmospheric modeling capability.

1.1 Brief History

1.1.1 CCMO and CCM1

Over the last fifteen years, the NCAR Climate and Global Dynamics (CGD) Division has pro-
vided a comprehensive, three-dimensional global atmospheric model to university and NCAR
scientists for use in the analysis and understanding of global climate. Because of its widespread
use, the model was designated a community tool and given the name Community Climate Model
(CCM). The original versions of the NCAR Community Climate Model, CCMOA [Washington,
1982] and CCMOB [Williamson, 1983], were based on the Australian spectral model [Bourke
et al., 1977, McAvaney et al., 1978] and an adiabatic, inviscid version of the ECMWF spectral
model [Baede et al., 1979]. The CCMOB implementation was constructed so that its simulated
climate would match the earlier CCMOA model to within natural variability (e.g. incorporated
the same set of physical parameterizations and numerical approximations), but also provided
a more flexible infrastructure for conducting medium— and long-range global forecast studies.
The major strength of this latter effort was that all aspects of the model were described in a
series of technical notes, which included a Users’ Guide [Sato et al., 1983], a subroutine guide
which provided a detailed description of the code [Williamson et al., 1983] a detailed description



of the algorithms [Williamson, 1983], and a compilation of the simulated circulation statistics
[Williamson and Williamson, 1984]. This development activity firmly established NCAR’s com-
mitment to provide a versatile, modular, and well-documented atmospheric general circulation
model that would be suitable for climate and forecast studies by NCAR and university scien-
tists. A more detailed discussion of the early history and philosophy of the Community Climate
Model can be found in Anthes [1986].

The second generation community model, CCM1, was introduced in July of 1987, and in-
cluded a number of significant changes to the model formulation which were manifested in
changes to the simulated climate. Principal changes to the model included major modifications
to the parameterization of radiation, a revised vertical finite-differencing technique for the dy-
namical core, modifications to vertical and horizontal diffusion processes, and modifications to
the formulation of surface energy exchange. A number of new modeling capabilities were also
introduced, including a seasonal mode in which the specified surface conditions vary with time,
and an optional interactive surface hydrology that followed the formulation presented by Man-
abe [1969]. A detailed series of technical documentation was also made available for this version
[Williamson et al., 1987; Bath et al., 1987; Williamson and Williamson, 1987; Hack et al., 1989]
and more completely describe this version of the CCM.

1.1.2 CCM2

The most ambitious set of model improvements occurred with the introduction of the third
generation of the Community Climate Model, CCM2, which was released in October of 1992.
This version was the product of a major effort to improve the physical representation of a wide
range of key climate processes, including clouds and radiation, moist convection, the planetary
boundary layer, and transport. The introduction of this model also marked a new philosophy
with respect to implementation. The CCM2 code was entirely restructured so as to satisfy three
major objectives: much greater ease of use, which included portability across a wide range of
computational platforms; conformance to a plug-compatible physics interface standard; and the
incorporation of single-job multitasking capabilities.

The standard CCM2 model configuration was significantly different from its predecessor in
almost every way, starting with resolution where the CCM2 employed a horizontal T42 spectral
resolution (approximately 2.8 x 2.8 degree transform grid), with 18 vertical levels and a rigid
lid at 2.917 mb. Principal algorithmic approaches shared with CCM1 were the use of a semi-
implicit, leap frog time integration scheme; the use of the spectral transform method for treating
the dry dynamics; and the use of a bi-harmonic horizontal diffusion operator. Major changes
to the dynamical formalism included the use of a terrain-following hybrid vertical coordinate,
and the incorporation of a shape-preserving semi-Lagrangian transport scheme [Williamson and
Olson, 1994] for advecting water vapor, as well as an arbitrary number of other scalar fields (e.g.
cloud water variables, chemical constituents, etc.). Principal changes to the physics included
the use of a d-Eddington approximation to calculate solar absorption [Briegleb, 1992]; the use
of a Voigt line shape to more accurately treat infrared radiative cooling in the stratosphere; the
inclusion of a diurnal cycle to properly account for the interactions between the radiative effects
of the diurnal cycle and the surface fluxes of sensible and latent heat; the incorporation of a
finite heat capacity soil/sea ice model; a more sophisticated cloud fraction parameterization and
treatment of cloud optical properties [Kiehl et al., 1994]; the incorporation of a sophisticated



non-local treatment of boundary-layer processes [Holtslag and Boville, 1993]; the use of a simple
mass flux representation of moist convection [Hack, 1994], and the optional incorporation of the
Biosphere-Atmosphere Transfer Scheme (BATS) of Dickinson et al. [1987]. As with previous
versions of the model, a User’'s Guide [Bath et al., 1992] and model description [Hack et al.,
1993] were provided to completely document the model formalism and implementation. Control
simulation data sets were documented in Williamson [1993].

1.1.3 CCM3

The CCM3 was the fourth generation in the series of NCAR’s Community Climate Model. Many
aspects of the model formulation and implementation were identical to the CCM2, although there
were a number of important changes that were incorporated into the collection of parameterized
physics, along with some modest changes to the dynamical formalism. Modifications to the
physical representation of specific climate processes in the CCM3 were motivated by the need
to address the more serious systematic errors apparent in CCM2 simulations, as well as to make
the atmospheric model more suitable for coupling to land, ocean, and sea-ice component models.
Thus, an important aspect of the changes to the model atmosphere was that they address well
known systematic biases in the top-of-atmosphere and surface (to the extent that they were
known) energy budgets. When compared to the CCM2, changes to the model formulation fell
into five major categories: modifications to the representation of radiative transfer through both
clear and cloudy atmospheric columns, modifications to hydrological processes (i.e., in the form
of changes to the atmospheric boundary layer, moist convection, and surface energy exchange),
the incorporation of a sophisticated land surface model, the incorporation of an optional slab
mixed-layer ocean/thermodynamic sea-ice component, and a collection of other changes to the
formalism which did not introduce significant changes to the model climate.

Changes to the clear-sky radiation formalism included the incorporation of minor COy bands
trace gases (CHy, NoO, CFC11, CFC12) in the longwave parameterization, and the incorpo-
ration of a background aerosol (0.14 optical depth) in the shortwave parameterization. All-sky
changes included improvements to the way in which cloud optical properties (effective radius and
liquid water path) were diagnosed, the incorporation of the radiative properties of ice clouds,
and a number of minor modifications to the diagnosis of convective and layered cloud amount.
Collectively these modification substantially reduced systematic biases in the global annually
averaged clear-sky and all-sky outgoing longwave radiation and absorbed solar radiation to well
within observational uncertainty, while maintaining very good agreement with global observa-
tional estimates of cloud forcing. Additionally, the large warm bias in simulated July surface
temperature over the Northern Hemisphere, the systematic over-prediction of precipitation over
warm land areas, and a large component of the stationary-wave error in CCM2, were also reduced
as a result of cloud-radiation improvements.

Modifications to hydrological processes included revisions to the major contributing param-
eterizations. The formulation of the atmospheric boundary layer parameterization was revised
(in collaboration with Dr. A. A. M. Holtslag of KNMI), resulting in significantly improved
estimates of boundary layer height, and a substantial reduction in the overall magnitude of the
hydrological cycle. Parameterized convection was also modified where this process was repre-
sented using the deep moist convection formalism of Zhang and McFarlane [1995] in conjunction
with the scheme developed by Hack [1994] for CCM2. This change resulted in an additional



reduction in the magnitude of the hydrological cycle and a smoother distribution of tropical pre-
cipitation. Surface roughness over oceans was also diagnosed as a function of surface wind speed
and stability, resulting in more realistic surface flux estimates for low wind speed conditions.
The combination of these changes to hydrological components resulted in a 13% reduction in
the annually averaged global latent heat flux and the associated precipitation rate. It should
be pointed out that the improvements in the radiative and hydrological cycle characteristics of
the model climate were achieved without compromising the quality of the simulated equilibrium
thermodynamic structures (one of the major strengths of the CCM2) thanks in part to the
incorporation of a Sundqvist [1988] style evaporation of stratiform precipitation.

The CCM3 incorporated version 1 of the Land Surface Model (LSM) developed by Bonan
[1996] which provided for the comprehensive treatment of land surface processes. This was a
one-dimensional model of energy, momentum, water, and CO, exchange between the atmosphere
and land, accounting for ecological differences among vegetation types, hydraulic and thermal
differences among soil types, and allowing for multiple surface types including lakes and wetlands
within a grid cell. LSM replaced the prescribed surface wetness, prescribed snow cover, and
prescribed surface albedos in CCM2. It also replaced the land surface fluxes in CCM2, using
instead flux parameterizations that included hydrological and ecological processes (e.g. soil
water, phenology, stomatal physiology, interception of water by plants).

The fourth class of changes to the CCM2 included the option to run CCM3 with a simple
slab ocean-thermodynamic sea ice model. The model employs a spatially and temporally pre-
scribed ocean heat flux and mixed layer depth, which ensures replication of realistic sea surface
temperatures and ice distributions for the present climate. The model allowed for the simplest
interactive surface for the ocean and sea ice components of the climate system.

The final class of model modifications included a change to the form of the hydrostatic matrix
which ensures consistency between w and the discrete continuity equation, and a more general-
ized form of the gravity wave drag parameterization. In the latter case, the parameterization
was configured to behave in the same way as the CCM2 parameterization of wave drag, but
included the capability to exploit more sophisticated descriptions of this process.

One of the more significant implementation differences with the earlier model was that CCM3
included an optional message-passing configuration, allowing the model to be executed as a
parallel task in distributed-memory environments. This was an example of how the Climate
and Global Dynamics Division continued to invest in technical improvements to the CCM in
the interest of making it easier to acquire and use in evolving computational environments. As
was the case for CCM2, the code was internally documented, obviating the need for a separate
technical note that describes each subroutine and common block in the model library. Thus,
the Users’ Guide, the land surface technical note, the CCM3 technical note [Kiehl et al., 1996],
the actual code and a series of reviewed scientific publications (including a special issue of the
Journal of Climate, Volume 11, Number 6) were designed to completely document CCM3.

1.2 Overview of CAM 3.0

The CAM 3.0 is the fifth generation of the NCAR atmospheric GCM. The name of the model
series has been changed from Community Climate Model to Community Atmosphere Model to
reflect the role of CAM 3.0 in the fully coupled climate system. In contrast to previous genera-



tions of the atmospheric model, CAM 3.0 has been designed through a collaborative process with
users and developers in the Atmospheric Model Working Group (AMWG). The AMWG includes
scientists from NCAR, the university community, and government laboratories. For CAM 3.0,
the AMWG proposed testing a variety of dynamical cores and convective parameterizations.
The data from these experiments has been freely shared among the AMWG, particularly with
member organizations (e.g. PCMDI) with methods for comparing modeled climates against
observations. The proposed model configurations have also been extensively evaluated using a
new diagnostics package developed by M. Stevens and J. Hack (CMS). The consensus of the
AMWG is to retain the spectral Eulerian dynamical core for the first official release of CAM
3.0, although the code includes the option to run with semi-Lagrange dynamics (section 3.2)
or with finite-volume dynamics (FV; section 3.3). The addition of FV is a major extension to
the model provided through a collaboration between NCAR and NASA Goddard’s Data Assim-
ilation Office (DAO). The AMWG also has decided to retain the Zhang and McFarlane [1995]
parameterization for deep convection (section 4.1) in CAM 3.0.
The major changes in the physics include:

e Treatment of cloud condensed water using a prognostic treatment (section 4.5): The orig-
inal formulation is introduced in Rasch and Kristjansson [1998]. Revisions to the parame-
terization to deal more realistically with the treatment of the condensation and evaporation
under forcing by large scale processes and changing cloud fraction are described in Zhang
et al. [2003].The parameterization has two components: 1) a macroscale component that
describes the exchange of water substance between the condensate and the vapor phase
and the associated temperature change arising from that phase change [Zhang et al., 2003];
and 2) a bulk microphysical component that controls the conversion from condensate to
precipitate [Rasch and Kristjansson, 1998].

e A new thermodynamic package for sea ice (chapter 6): The philosophy behind the design
of the sea ice formulation of CAM 3.0 is to use the same physics, where possible, as in the
sea ice model within CCSM, which is known as CSIM for Community Sea Ice Model. In the
absence of an ocean model, uncoupled simulations with CAM 3.0 require sea ice thickness
and concentration to be specified. Hence the primary function of the sea ice formulation
in CAM 3.0 is to compute surface fluxes. The new sea ice formulation in CAM 3.0 uses
parameterizations from CSIM for predicting snow depth, brine pockets, internal shortwave
radiative transfer, surface albedo, ice-atmosphere drag, and surface exchange fluxes.

e Explicit representation of fractional land and sea-ice coverage (section 7.2): Earlier ver-
sions of the global atmospheric model (the CCM series) included a simple land-ocean-sea
ice mask to define the underlying surface of the model. It is well known that fluxes of
fresh water, heat, and momentum between the atmosphere and underlying surface are
strongly affected by surface type. The CAM 3.0 provides a much more accurate rep-
resentation of flux exchanges from coastal boundaries, island regions, and ice edges by
including a fractional specification for land, ice, and ocean. That is, the area occupied
by these surface types is described as a fractional portion of the atmospheric grid box.
This fractional specification provides a mechanism to account for flux differences due to
sub-grid inhomogeneity of surface types.



e A new, general, and flexible treatment of geometrical cloud overlap in the radiation calcu-
lations (section 4.8.5): The new parameterizations compute the shortwave and longwave
fluxes and heating rates for random overlap, maximum overlap, or an arbitrary combina-
tion of maximum and random overlap. The specification of the type of overlap is identical
for the two bands, and it is completely separated from the radiative parameterizations. In
CAM 3.0, adjacent cloud layers are maximally overlapped and groups of clouds separated
by cloud-free layers are randomly overlapped. The introduction of the generalized overlap
assumptions permits more realistic treatments of cloud-radiative interactions. The param-
eterizations are based upon representations of the radiative transfer equations which are
more accurate than previous approximations in the literature. The methodology has been
designed and validated against calculations based upon the independent column approxi-
mation (ICA).

e A new parameterization for the longwave absorptivity and emissivity of water vapor (sec-
tion 4.9.2): This updated treatment preserves the formulation of the radiative transfer
equations using the absorptivity /emissivity method. However, the components of the
absorptivity and emissivity related to water vapor have been replaced with new terms
calculated with the General Line-by-line Atmospheric Transmittance and Radiance Model
(GENLN3). Mean absolute differences between the cooling rates from the original method
and GENLN3 are typically 0.2 K/day. These differences are reduced by at least a factor
of 3 using the updated parameterization. The mean absolute errors in the surface and
top-of-atmosphere clear-sky longwave fluxes for standard atmospheres are reduced to less
than 1 W/m?. The updated parameterization increases the longwave cooling at 300 mb
by 0.3 to 0.6 K/day, and it decreases the cooling near 800 mb by 0.1 to 0.5 K/day. The
increased cooling is caused by line absorption and the foreign continuum in the rotation
band, and the decreased cooling is caused by the self continuum in the rotation band.

e The near-infrared absorption by water vapor has been updated (section 4.8.2). In the
original shortwave parameterization for CAM [Briegleb, 1992], the absorption by water
vapor is derived from the LBL calculations by Ramaswamy and Freidenreich [1991]. In
turn, these LBL calculations are based upon the 1983 AFGL line data [Rothman et al.,
1983]. The original parameterization did not include the effects of the water-vapor contin-
uum in the visible and near-infrared. In the new version of CAM, the parameterization is
based upon the HITRAN2k line database [Rothman et al., 2003], and it incorporates the
CKD 2.4 prescription for the continuum. The magnitude of errors in flux divergences and
heating rates relative to modern LBL calculations have been reduced by approximately
seven times compared to the old CAM parameterization.

e The uniform background aerosol has been replaced with a present-day climatology of sul-
fate, sea-salt, carbonaceous, and soil-dust aerosols (section 4.8.3). The climatology is
obtained from a chemical transport model forced with meteorological analysis and con-
strained by assimilation of satellite aerosol retrievals. These aerosols affect the shortwave
energy budget of the atmosphere. CAM 3.0 also includes a mechanism for treating the
shortwave and longwave effects of volcanic aerosols. A time history for the mass of strato-
spheric sulfuric acid for volcanic eruptions in the recent past is included with the standard
model.



e Evaporation of convective precipitation (section 4.1) following Sundqvist [1988]: The en-
hancement of atmospheric moisture through this mechanism offsets the drying introduced
by changes in the longwave absorptivity and emissivity.

e A careful formulation of vertical diffusion of dry static energy (section 4.11).
Other major enhancements include:

e A new, extensible sea-surface temperature boundary data set (section 7.2): This dataset
prescribes analyzed monthly mid-point mean values of SST and ice concentration for the
period 1950 through 2001. The dataset is a blended product, using the global HadISST
OI dataset prior to 1981 and the Smith/Reynolds EOF dataset post-1981. In addition to
the analyzed time series, a composite of the annual cycle for the period 1981-2001 is also
available in the form of a mean “climatological” dataset.

e Clean separation between the physics and dynamics (chapter 2): The dynamical core can
be coupled to the parameterization suite in a purely time split manner or in a purely pro-
cess split one. The distinction is that in the process split approximation the physics and
dynamics are both calculated from the same past state, while in the time split approx-
imations the dynamics and physics are calculated sequentially, each based on the state
produced by the other.






Chapter 2

Coupling of Dynamical Core and
Parameterization Suite

The CAM 3.0 cleanly separates the parameterization suite from the dynamical core, and makes
it easier to replace or modify each in isolation. The dynamical core can be coupled to the
parameterization suite in a purely time split manner or in a purely process split one, as described
below.

Consider the general prediction equation for a generic variable 1),

o _

o = D)+ P) 2.)

where 1) denotes a prognostic variable such as temperature or horizontal wind component. The
dynamical core component is denoted D and the physical parameterization suite P.

A three-time-level notation is employed which is appropriate for the semi-implicit Eulerian
spectral transform dynamical core. However, the numerical characteristics of the physical pa-
rameterizations are more like those of diffusive processes rather than advective ones. They are
therefore approximated with forward or backward differences, rather than centered three-time-
level forms.

The Process Split coupling is approximated by

P = " AAED (P 0 ) 4 2ALP (¢, ") (2.2)
where P(¢*, 9" 1) is calculated first from
* =" 2AEP (Y ) (2.3)
The Time Split coupling is approximated by

P = " 20D, Y )
YT =t 2ALP (T )

The distinction is that in the Process Split approximation the calculations of D and P are
both based on the same past state, 1", while in the Time Split approximations D and P are
calculated sequentially, each based on the state produced by the other.



As mentioned above, the Eulerian core employs the three-time-level notation in (2.2)-(2.5).
Eqns. (2.2)-(2.5) also apply to two-time-level semi-Lagrangian and finite volume cores by drop-
ping centered n term dependencies, and replacing n-1 by n and 2At¢ by At.

The parameterization package can be applied to produce an updated field as indicated in
(2.3) and (2.5). Thus (2.5) can be written with an operator notation

V=P (y") | (2.6)

where only the past state is included in the operator dependency for notational convenience.
The implicit predicted state dependency is understood. The Process Split equation (2.2) can
also be written in operator notation as

(2.7)

¢n+1 - D <,¢)n—1 P(wn_l) - T/Jn_l)

2At

where the first argument of D denotes the prognostic variable input to the dynamical core and
the second denotes the forcing rate from the parameterization package, e.g. the heating rate in
the thermodynamic equation. Again only the past state is included in the operator dependency,
with the implicit predicted state dependency left understood. With this notation the Time Split
system (2.5) and (2.5) can be written

Pt =P (D (v"1,0)) . (2.8)

The total parameterization package in CAM 3.0 consists of a sequence of components, indi-
cated by
P={M,R,S T}, (2.9)

where M denotes (Moist) precipitation processes, R denotes clouds and Radiation, S denotes the
Surface model, and 7" denotes Turbulent mixing. Each of these in turn is subdivided into various
components: M includes an optional dry adiabatic adjustment (normally applied only in the
stratosphere), moist penetrative convection, shallow convection, and large-scale stable conden-
sation; R first calculates the cloud parameterization followed by the radiation parameterization;
S provides the surface fluxes obtained from land, ocean and sea ice models, or calculates them
based on specified surface conditions such as sea surface temperatures and sea ice distribution.
These surface fluxes provide lower flux boundary conditions for the turbulent mixing 7" which
is comprised of the planetary boundary layer parameterization, vertical diffusion, and gravity
wave drag.

Defining operators following (2.6) for each of the parameterization components, the couplings
in CAM 3.0 are summarized as:

TIME SPLIT

Y =T (S (R (M (D (v"1,0))))) (2.10)
PROCESS SPLIT

51— D (¢ T (S(R(M (;Zt D)) =" ) (2.11)

10



The labels Time Split and Process Split refer to the coupling of the dynamical core with the
complete parameterization suite. The components within the parameterization suite are coupled
via time splitting in both forms.

The Process Split form is convenient for spectral transform models. With Time Split approx-
imations extra spectral transforms are required to convert the updated momentum variables
provided by the parameterizations to vorticity and divergence for the Eulerian spectral core, or
to recalculate the temperature gradient for the semi-Lagrangian spectral core. The Time Split
form is convenient for the finite-volume core which adopts a Lagrangian vertical coordinate.
Since the scheme is explicit and restricted to small time-steps by its non-advective component,
it sub-steps the dynamics multiple times during a longer parameterization time step. With
Process Split approximations the forcing terms must be interpolated to an evolving Lagrangian
vertical coordinate every sub-step of the dynamical core. Besides the expense involved, it is not
completely obvious how to interpolate the parameterized forcing, which can have a vertical grid
scale component arising from vertical grid scale clouds, to a different vertical grid. [Williamson,
2002] compares simulations with the Eulerian spectral transform dynamical core coupled to the
CCM3 parameterization suite via Process Split and Time Split approximations.
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Chapter 3

Dynamics

3.1 Eulerian Dynamical Core

The hybrid vertical coordinate that has been implemented in CAM 3.0 is described in this
section. The hybrid coordinate was developed by Simmons and Striifing [1981] in order to
provide a general framework for a vertical coordinate which is terrain following at the Earth’s
surface, but reduces to a pressure coordinate at some point above the surface. The hybrid
coordinate is more general in concept than the modified o scheme of Sangster [1960], which is
used in the GFDL SKYHI model. However, the hybrid coordinate is normally specified in such
a way that the two coordinates are identical.

The following description uses the same general development as Simmons and Striifing [1981],
who based their development on the generalized vertical coordinate of Kasahara [1974]. A
specific form of the coordinate (the hybrid coordinate) is introduced at the latest possible point.
The description here differs from Simmons and Striifing [1981] in allowing for an upper boundary
at finite height (nonzero pressure), as in the original development by Kasahara. Such an upper
boundary may be required when the equations are solved using vertical finite differences.

3.1.1 Generalized terrain-following vertical coordinates

Deriving the primitive equations in a generalized terrain-following vertical coordinate requires
only that certain basic properties of the coordinate be specified. If the surface pressure is T,
then we require the generalized coordinate n(p, 7) to satisfy:

1. n(p, ) is a monotonic function of p.

2. p(m,m) =1

3. n(0,7) =0

4. n(py, ™) = n, where p; is the top of the model.

The latter requirement provides that the top of the model will be a pressure surface, simplifying
the specification of boundary conditions. In the case that p; = 0, the last two requirements
are identical and the system reduces to that described in Simmons and Striifing [1981]. The

13



boundary conditions that are required to close the system are:

n(r,m) = 0,

n(pe, ™) = w(p) =0.

Given the above description of the coordinate, the continuous system of equations can be
written following Kasahara [1974] and Simmons and Striifing [1981]. The prognostic equations

are:

9¢

ot

)

at

oT

ot

dq
ot
or
ot

V- (nfcosd) — V(B + ) + F,,
-1 [0
P a)\(UT)—I—(:osgb ¢(VT)}
+Q+FT + Fry,
-1 [0 I
a cos? ¢ 8)\( q>+COS¢8¢

e

k-V x(n/cos¢)+ Fe,,

dp
%V)m

0T

.0q
(V®}+®—n§?+&

R

*
p

w
“p

(3.3)

(3.4)

(3.5)
(3.6)

(3.7)

The notation follows standard conventions, and the following terms have been introduced with

n = (ny,ny):

ng =

ny =

ou _T,1 0Op
HCH DV =i Rt = R By,
oV Tcosqﬁ(?p
—(C+HU - "ar R e 06
U?+Vv?
2cos2¢
(u,v)cos @,

)

()

FV7

(3.8)
(3.9)

(3.10)
(3.11)
(3.12)

(3.13)

The terms Fy, Fy,Q, and S represent the sources and sinks from the parameterizations for
momentum (in terms of U and V'), temperature, and moisture, respectively. The terms F¢, and

F;

5, represent sources due to horizontal diffusion of momentum, while Fr,, and Ff, represent

sources attributable to horizontal diffusion of temperature and a contribution from frictional
heating (see sections on horizontal diffusion and horizontal diffusion correction).
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In addition to the prognostic equations, three diagnostic equations are required:

p(1)
=, + R/ T,dnp, (3.14)
p(n)
dp dp dp
A d 1
nan 5 /mV (8nv> n, (3.15)

w:V-Vp—/ \

Ui

(gﬁ; v) dn. (3.16)

Note that the bounds on the vertical integrals are specified as values of n (e.g. 7, 1) or as
functions of p (e.g. p (1), which is the pressure at n = 1).

3.1.2 Conversion to final form

Equations (3.1)-(3.16) are the complete set which must be solved by a GCM. However, in order
to solve them, the function n(p, 7) must be specified. In advance of actually specifying n(p, ),
the equations will be cast in a more convenient form. Most of the changes to the equations
involve simple applications of the chain rule for derivatives, in order to obtain terms that will
be easy to evaluate using the predicted variables in the model. For example, terms involving
horizontal derivatives of p must be converted to terms involving only dp/0m and horizontal
derivatives of m. The former can be evaluated once the function n(p, 7) is specified.
The vertical advection terms in (3.5), (3.6), (3.8), and (3.9) may be rewritten as:

. 61/) .Op 8¢

since ndp/dn is given by (3.15). Similarly, the first term on the right-hand side of (3.15) can be

expanded as
dp Opom

and (3.7) invoked to specify Or/0t.
The integrals which appear in (3.7), (3.15), and (3.16) can be written more conveniently by

expanding the kernel as
dp dp dp
V- | =V V. +—V.-V. 1

(077 ) v (077) on (3.19)

The second term in (3.19) is easily treated in vertical integrals, since it reduces to an integral
in pressure. The first term is expanded to:

V.V (‘9]9) v 2 op)

an an
B o (0dp
“v5, (5:57)
B o (0p dp om
vy (GW) Vet v 2y (an> (3.20)



The second term in (3.20) vanishes because 07/0n = 0, while the first term is easily treated
once 7(p, ) is specified. Substituting (3.20) into (3.19), one obtains:

dp 0 (0p op
o (2v) = 2 ()y wei ey, o

Using (3.21) as the kernel of the integral in (3.7), (3.15), and (3.16), one obtains integrals of the

form
dp B o (0dp dp
/V (3_nv>dn_/[3n <3W)V VT +3nv V]d
_ , op
= /V Vrd (8#) +/5dp. (3.22)

The original primitive equations (3.3)-(3.7), together with (3.8), (3.9), and (3.14)-(3.16) can
now be rewritten with the aid of (3.17), (3.18), and (3.22).

% = k-Vx(n/cosop)+ I, , (3.23)
% = V-(n/cos¢)—V?(E+®)+ F;,, , (3.24)
or -1 [0 OpdT R__w
BT acods a)\(UT)chosqﬁ ¢( )] + 76— 77a W —|—c—;;Tvp
+Q -+ FT + FFH (325)
dq -1 [0 _Op O0q
o " acods a)\(Uq)chosqﬁ ¢( )} + g0 — 778 o + S, (3.26)
1) p(1)
L R e (87’) / sdp, (3.27)
ot (m) o) Jom
B 8p 0—-U T,10por
B 8p8 V _T,cos¢ldporn
ny = —((+ U 877 ap R @ 0o + Fy, (3.29)
p(1)
d = O+ R/ T,dn p, (3.30)
p(n)
Op 8p Op p(1)
o = or ) 'V (aw) + /p(m) ddp (3.31)
(77) p(1)
— | V.Vnd (ap ) / sdp,
(m) o) I
(m) p(n)
w = Pyvoveo [Tv.ovea(2 / 5dp. (3.32)
o (m) o) o

Once 7n(p, ) is specified, then dp/Om can be determined and (3.23)-(3.32) can be solved in a
GCM.
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In the actual definition of the hybrid coordinate, it is not necessary to specify n(p, 7) explic-
itly, since (3.23)-(3.32) only requires that p and dp/0n be determined. It is sufficient to specify
p(n, ) and to let n be defined implicitly. This will be done in section 3.1.7. In the case that
p(n,m) = om and n; = 0, (3.23)-(3.32) can be reduced to the set of equations solved by CCMI.

3.1.3 Continuous equations using J1In(m)/0t

In practice, the solutions generated by solving the above equations are excessively noisy. This
problem appears to arise from aliasing problems in the hydrostatic equation (3.30). The Inp
integral introduces a high order nonlinearity which enters directly into the divergence equation
(3.24). Large gravity waves are generated in the vicinity of steep orography, such as in the
Pacific Ocean west of the Andes.

The noise problem is solved by converting the equations given above, which use 7 as a
prognostic variable, to equations using II = In(x). This results in the hydrostatic equation
becoming only quadratically nonlinear except for moisture contributions to virtual temperature.
Since the spectral transform method will be used to solve the equations, gradients will be
obtained during the transform from wave to grid space. Outside of the prognostic equation for
I1, all terms involving V7 will then appear as 7VII.
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Equations (3.23)-(3.32) become:

% = k-Vx(n/cosd) + Fe,,

g — V-(n/COS¢)—v2(E+(I))+F5H’

o 1 T ) .Opdl' R_w
B g U)oV T g

+Q+FTH+FFH7

0q -1 0 0 .0p Oq
ot a cos? ¢ _8)\(Uq) * COS¢8¢(VQ)] +a 77877 dp +5
1) p(1)
om _ V-vnd<@)—l/ 5dp,
ot (1) o) 7 Sy
Op0—U _T,m0pdll
ny +(C+f)V—776—na—p W poron TIv
Op0—V _T,cos¢pm dpOll
- _ P TP R
ny (C+ HU 77877 ap - p8w8¢+ v,
p(1)
d D, + R/ T,dInp,
p(n)
(1) p(1)
2P _ b / wv.vnd(@) +/ 5dp
o O | J iy on p(1e)
(m) p(n)
—/ 7V - VIId (@> —/ 5dp,
() om p(1e)
(n) p(n)
w = @TFV~VH—/ WV-VHd(@>—/ odp.
on (me) on p(1e)

(3.33)
(3.34)

(3.35)

(3.36)
(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

The above equations reduce to the standard o equations used in CCM1 if n = ¢ and n; = 0.

(Note that in this case Op/0m = p/m = 0.)

3.1.4 Semi-implicit formulation

The model described by (3.33)-(3.42), without the horizontal diffusion terms, together with
boundary conditions (3.1) and (3.2), is integrated in time using the semi-implicit leapfrog scheme
described below. The semi-implicit form of the time differencing will be applied to (3.34) and
(3.36) without the horizontal diffusion sources, and to (3.37). In order to derive the semi-implicit
form, one must linearize these equations about a reference state. Isolating the terms that will
have their linear parts treated implicitly, the prognostic equations (3.33), (3.34), and (3.37) may
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be rewritten as:

00

i —RT,V?Inp — V?® + X, (3.43)

oT R_w  9pdT

— =4=T,= - +Yi, 3.44
ot chop 776?77 dp ! ( )
II 1 [P

x| vz (3.45)
ot p(nt)

where X1,Y7, Z; are the remaining nonlinear terms not explicitly written in (3.43)-(3.45). The
terms involving ® and w may be expanded into vertical integrals using (3.40) and (3.42), while
the V21n p term can be converted to V2II, giving:

95 O p(1)

= —RTZLv1 - pv? / Tdlnp + X, (3.46)
at P ('37r (77)
oT RT op [P () oT
g9t _ ___/ Sdp — [ p/ 5dp—/ §dp| — + Y, (3.47)
ot Cp P Jp(ne) O Jp(me) p(ne) dp
o1l ()
= odp + Zs. 4
D pi/m D+ Zo (3.48)

Once again, only terms that will be linearized have been explicitly represented in (3.46)-(3.48),
and the remaining terms are included in X5, Y5, and Z,. Anticipating the linearization, T, and
c; have been replaced by T and ¢, in (3.46) and (3.47). Furthermore, the virtual temperature
corrections are included with the other nonlinear terms.

In order to linearize (3.46)-(3.48), one specifies a reference state for temperature and pressure,
then expands the equations about the reference state:

T=T +T, (3.49)
T=n" +7, (3.50)
p=p"(n,7")+p. (3.51)

In the special case that p(n,7) = o, (3.46)-(3.48) can be converted into equations involving
only IT = Inr instead of p, and (3.50) and (3.51) are not required. This is a major difference
between the hybrid coordinate scheme being developed here and the ¢ coordinate scheme in
CCM1.
Expanding (3.46)-(3.48) about the reference state (3.49)-(3.51) and retaining only the linear
terms explicitly, one obtains:
5 - r p"(1) P'(1)
0 g <@) H+/ T’dlin—i-/ —dy’
on p"(n v P
ot op pr(m)
=—— odp" + Zs. (3.54)
)

_ 2
ot RV

+ X, (3.52)

T’

oT RT™ [P ) p" (1) p"(n) oT"

— = < ) / Sdp” — / Sdp” | —— +Ys, (3.53)
pT(ne) pT(ne) Ip

ot IS



The semi-implicit time differencing scheme treats the linear terms in (3.52)-(3.54) by averaging
in time. The last integral in (3.52) is reduced to purely linear form by the relation

r_ (P
dp-ﬂd(aﬁ) + . (3.55)

In the hybrid coordinate described below, p is a linear function of m, so x above is zero.

We will assume that centered differences are to be used for the nonlinear terms, and the
linear terms are to be treated implicitly by averaging the previous and next time steps. Finite
differences are used in the vertical, and are described in the following sections. At this stage only
some very general properties of the finite difference representation must be specified. A layering
structure is assumed in which field values are predicted on K layer midpoints denoted by an
integer index, 7y (see Figure 3.1). The interface between 7 and 71 is denoted by a half-integer
index, n41/2. The model top is at 1/ = 7, and the Earth’s surface is at ng412 = 1. It is
further assumed that vertical integrals may be written as a matrix (of order K) times a column
vector representing the values of a field at the n; grid points in the vertical. The column vectors
representing a vertical column of grid points will be denoted by underbars, the matrices will be
denoted by bold-faced capital letters, and superscript 1" will denote the vector transpose. The
finite difference forms of (3.52)-(3.54) may then be written down as:

én—l-l — én—l 4 2At£n

—2AtRb'V? (@ — H”)

—2AtRH™V? <(I/)n_l ; L _ (I’)">

—2AtRh"V? (w — H”> : (3.56)
T = TP LAY — 2AtD" (W - g”) , (3.57)
I = TI" 4 2ALZ™ — 2At (énlg—énﬂ - Q")T %%T, (3.58)

where ()" denotes a time varying value at time step n. The quantities X", Y", and Z" are

defined so as to complete the right-hand sides of (3.43)-(3.45). The components of Ap" are

given by Apy = p; 1P 1 This definition of the vertical difference operator A will be used in
2 2

subsequent equations. The reference matrices H" and D", and the reference column vectors b"

and A", depend on the precise specification of the vertical coordinate and will be defined later.

3.1.5 Energy conservation

We shall impose a requirement on the vertical finite differences of the model that they conserve
the global integral of total energy in the absence of sources and sinks. We need to derive
equations for kinetic and internal energy in order to impose this constraint. The momentum
equations (more painfully, the vorticity and divergence equations) without the Fy, Fy, Fr,, and
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Fj,, contributions, can be combined with the continuity equation
o (0p dp a (0op
— | = V.| =V =0 3.59
ot (377)+ (an )*an (a” (3.:59)
to give an equation for the rate of change of kinetic energy:
o (0Op dp d (0p
—|=F) = —-V- EV E
ot (877 ) v (077 ) an (077 n)
RT dp dp
——V.Vo —. 3.60
n o’V (3.60)

The first two terms on the right-hand side of (3.60) are transport terms. The horizontal integral
of the first (horizontal) transport term should be zero, and it is relatively straightforward to
construct horizontal finite difference schemes that ensure this. For spectral models, the integral
of the horizontal transport term will not vanish in general, but we shall ignore this problem.

The vertical integral of the second (vertical) transport term on the right-hand side of (3.60)
should vanish. Since this term is obtained from the vertical advection terms for momentum,
which will be finite differenced, we can construct a finite difference operator that will ensure
that the vertical integral vanishes.

The vertical advection terms are the product of a vertical velocity (79p/0n) and the vertical
derivative of a field (0¢/dp). The vertical velocity is defined in terms of vertical integrals of
fields (3.42), which are naturally taken to interfaces. The vertical derivatives are also naturally
taken to interfaces, so the product is formed there, and then adjacent interface values of the
products are averaged to give a midpoint value. It is the definition of the average that must be
correct in order to conserve kinetic energy under vertical advection in (3.60). The derivation
will be omitted here, the resulting vertical advection terms are of the form:

8]? ad} . 1 ap @ -
< 87) 8p) T 2Ap ( 877)k+1/2 (Vrg1 — ) + (776?7>k1/2 (U wkl)], (3.61)

Apr = DPrt1j2 — Pr-1/2- (3.62)

The choice of definitions for the vertical velocity at interfaces is not crucial to the energy con-
servation (although not completely arbitrary), and we shall defer its definition until later. The
vertical advection of temperature is not required to use (3.61) in order to conserve mass or en-
ergy. Other constraints can be imposed that result in different forms for temperature advection,
but we will simply use (3.61) in the system described below.

The last two terms in (3.60) contain the conversion between kinetic and internal (potential)
energy and the form drag. Neglecting the transport terms, under assumption that global in-
tegrals will be taken, noting that Vp/p = %g—ﬁVH, and substituting for the geopotential using
(3.40), (3.60) can be written as:

9 (dp _ dp ™ Op
= (anE) = ~RL5 V- (paﬁvn) (3.63)

o B p(1)
Py .vo, - Ly v/ RT,dInp + ...
377 a p(n)
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The second term on the right-hand side of (3.64) is a source (form drag) term that can be
neglected as we are only interested in internal conservation properties. The last term on the
right-hand side of (3.64) can be rewritten as

p(1) p(1) p(1)
@V . V/ RT,dlnp=V - {@V/ RTvdlnp} -V (@V) / RT,dInp. (3.64)
an p(n) M Jpw on p(n)

The global integral of the first term on the right-hand side of (3.64) is obviously zero, so that
(3.64) can now be written as:

— | =—F ) = —RT, | —=VII |+ V- RT,dInp+ ... 3.65

We now turn to the internal energy equation, obtained by combining the thermodynamic
equation (3.36), without the @, Fr,,, and FFr, terms, and the continuity equation (3.59):

9 (Op ..\ _ Ip . R dpw
pr (E%)CPT) =-V (8ncpTV> an (ancan) + RT, np (3.66)

As in (3.60), the first two terms on the right-hand side are advection terms that can be neglected
under global integrals. Using (3.16), (3.66) can be written as:

o (0dp , B dp w Op B Bpl/” dp
5 (ancpT)—RTyanV <pa7rvn> RTg mv 5V )t (3.67)

The rate of change of total energy due to internal processes is obtained by adding (3.65) and
(3.67) and must vanish. The first terms on the right-hand side of (3.65) and (3.67) obviously
cancel in the continuous form. When the equations are discretized in the vertical, the terms will
still cancel, providing that the same definition is used for (1/p dp/0m) in the nonlinear terms of
the vorticity and divergence equations (3.38) and (3.39), and in the w term of (3.36) and (3.42).

The second terms on the right-hand side of (3.65) and (3.67) must also cancel in the global
mean. This cancellation is enforced locally in the horizontal on the column integrals of (3.65)
and (3.67), so that we require:

1 p(1) 1 1 n
/ V- <@V)/ RT,dInp dnz/ {RTv@—/ V- (a—p,V) dn’}dn- (3.68)
m an p(n) e omp Jy, on

The inner integral on the left-hand side of (3.68) is derived from the hydrostatic equation (3.40),
which we shall approximate as

K
O =, + R HuTu,

=k
K

=0, +RY _ HyTy, (3.69)
=1

® = ®,1+ RHT,, (3.70)
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where Hyy = 0 for £ < k. The quantity 1 is defined to be the unit vector. The inner integral
on the right-hand side of (3.68) is derived from the vertical velocity equation (3.42), which we
shall approximate as

(%)k: (%%’i) V- VI — ZCM [&Apg—{—ﬂ(Vg VII) A (gﬁ) } (3.71)

(=1

where Cy, = 0 for ¢ > k, and Cy, is included as an approximation to 1/py for ¢ < k and the
symbol A is similarly defined as in (3.62). Cx, will be determined so that w is consistent with
the discrete continuity equation following Williamson and Olson [1994]. Using (3.69) and (3.71),
the finite difference analog of (3.68) is

K
1 op
z{—{mz}
K

A 0
or ¢

k=1

where we have used the relation
V-V (9p/On)k = [0xApx + 7 (Vi - VII) A (Op/0m), ]/ Any, (3.73)

(see 3.22). We can now combine the sums in (3.72) and simplify to give

ii { {(Mpk + 7 (V- VI)A (gﬁ > k] HMTM}

(=1

- i 3 H@Am Y (V,-VIDA (gi)j AkakgTvk} (3.74)

k=1 ¢=1

Interchanging the indexes on the left-hand side of (3.74) will obviously result in identical ex-
pressions if we require that

Hkg == ngApg. (375)

Given the definitions of vertical integrals in (3.70) and (3.71) and of vertical advection in
(3.61) and (3.62) the model will conserve energy as long as we require that C' and H satisfy
(3.75). We are, of course, still neglecting lack of conservation due to the truncation of the
horizontal spherical harmonic expansions.

3.1.6 Horizontal diffusion

CAM 3.0 contains a horizontal diffusion term for 7', (, and ¢ to prevent spectral blocking and
to provide reasonable kinetic energy spectra. The horizontal diffusion operator in CAM 3.0 is
also used to ensure that the CFL condition is not violated in the upper layers of the model.
The horizontal diffusion is a linear V2 form on 7 surfaces in the top three levels of the model
and a linear V* form with a partial correction to pressure surfaces for temperature elsewhere.
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The V2 diffusion near the model top is used as a simple sponge to absorb vertically propagating
planetary wave energy and also to control the strength of the stratospheric winter jets. The V2
diffusion coefficient has a vertical variation which has been tuned to give reasonable Northern
and Southern Hemisphere polar night jets.

In the top three model levels, the V2 form of the horizontal diffusion is given by

Fopy = KO [V (C+ ) +2(C+ f) Ja*] (3.76)
Fs, = K® [V% +2(5/a%)], (3.77)
Fr, = KOVT. (3.78)

Since these terms are linear, they are easily calculated in spectral space. The undifferentiated
correction term is added to the vorticity and divergence diffusion operators to prevent damping
of uniform (n = 1) rotations [Orszag, 1974; Bourke et al., 1977]. The V? form of the horizontal
diffusion is applied only to pressure surfaces in the standard model configuration.

The horizontal diffusion operator is better applied to pressure surfaces than to terrain-
following surfaces (applying the operator on isentropic surfaces would be still better). Although
the governing system of equations derived above is designed to reduce to pressure surfaces above
some level, problems can still occur from diffusion along the lower surfaces. Partial correction
to pressure surfaces of harmonic horizontal diffusion (9¢/0t = KV2¢) can be included using the
relations:

V=V, § — pg§V Inp
Ve = Vi —pg—fDV% Inp — 2V, (g—i—) -Vup + 7% SVQ (3.79)

Retaining only the first two terms above gives a correction to the n surface diffusion which
involves only a vertical derivative and the Laplacian of log surface pressure,

95 9p
Vi = Vie - "5 B —V°II +. (3.80)
Similarly, biharmonic diffusion can be partially corrected to pressure surfaces as:
98 op
V6 =V,é— ey VI +. (3.81)

The bi-harmonic V* form of the diffusion operator is applied at all other levels (generally
throughout the troposphere) as

Fop = K@ [V (¢4 )~ ¢+ ) (2/a?)7] (3.82)
Fs, = —KWY [V46 —6(2/a*)?], (3.83)
0T Op
KW |y —
Fr, = —KWYW |V'T "o (%V‘* ] (3.84)

The second term in Fr,, consists of the leading term in the transformation of the V* operator
to pressure surfaces. It is included to offset partially a spurious diffusion of 7" over mountains.
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As with the V? form, the V* operator can be conveniently calculated in spectral space. The
correction term is then completed after transformation of 7" and V*II back to grid—point space.
As with the V? form, an undifferentiated term is added to the vorticity and divergence diffusion
operators to prevent damping of uniform rotations.

3.1.7 Finite difference equations

The governing equations are solved using the spectral method in the horizontal, so that only the
vertical and time differences are presented here. The dynamics includes horizontal diffusion of
T,(C+ f), and 0. Only T has the leading term correction to pressure surfaces. Thus, equations
that include the terms in this time split sub-step are of the form

dp

5p = Dy (¥) = (=)' K®VEY, (3.85)
for (( + f) and 9, and
i (1) (29) 2t Y Y o2
Y Dyn(T) — (-1)'K {VnT Wap aﬂV H} : (3.86)

where i = 1 in the top few model levels and ¢ = 2 elsewhere (generally within the troposphere).
These equations are further subdivided into time split components:

Pt ="+ 2At Dyn (" 0" ") (3.87)
P = (3.89)
for (¢ + f) and 9, and

T =T + 2At Dyn (T, T, T"71) (3.90)
T =T —2At (—1)' K@V (T7) | (3.91)

. : N OT* Jp .,
Tt = T* 4+ 2At (—1) K®)p —— ZZ V211 3.92
+ (—1) ™oy on ; (3.92)

for T', where in the standard model i only takes the value 2 in (3.92). The first step from ( )"
to ( )"*! includes the transformation to spectral coefficients. The second step from ( )" to
(") for § and ¢, or ( )" to ()" for T, is done on the spectral coefficients, and the final step
from ()" to (*)"™" for T is done after the inverse transform to the grid point representation.
The following finite-difference description details only the forecast given by (3.87) and (3.90).
The finite-difference form of the forecast equation for water vapor will be presented later in
Section 3c. The general structure of the complete finite difference equations is determined by
the semi-implicit time differencing and the energy conservation properties described above. In
order to complete the specification of the finite differencing, we require a definition of the vertical
coordinate. The actual specification of the generalized vertical coordinate takes advantage of the
structure of the equations (3.33)-(3.42). The equations can be finite-differenced in the vertical
and, in time, without having to know the value of n anywhere. The quantities that must be

26



known are p and dp/0w at the grid points. Therefore the coordinate is defined implicitly through
the relation:

p(n, ™) = A(n)po + B(n), (3.93)
which gives
g—i = B(n). (3.94)

A set of levels n, may be specified by specifying A, and By, such that n, = Ay + By, and
difference forms of (3.33)-(3.42) may be derived.

The finite difference forms of the Dyn operator (3.33)-(3.42), including semi-implicit time
integration are:

"t o= ("4 2Atk - VX (R cos 9) (3.95)

g = g 1+2At[ - (n"/ cos ¢) — V2 (ﬁ”+q>sl+RH"@')”>]

—2AtRH'V? (@,)R_l JQF ™ (I’)")

Hn—l Hn+1
OAtR (U + ) V2 (+ - H”) , (3.96)
@yt = @y -t — L wry s L wry | 3o
= = a cos? ¢ O\ acospOp -
n—1 n+1
_I9AtD" (& _ én>
= e —2At— ((5") @"Jr(Z")T-VH”w”M)
n—1 n+1 T
N (ﬁ—gn) Ly, (3.98)
2 7-‘-7"_
10p 1011
(nv)y = (G+f)Vi— RTvk( 67) TN
1 .8p> (.(‘329)
_ o» Uper — Up) + (022 Uy — Up_
A, (7787] k+1/2( i1 — Ug) n ’H/Q( k= Uk-1)
+(Fu)y (3.99)
10 cos ¢ 011
(e =~ (6 1)U BT, (SF) 20T
1 8p> ( 3]))
_ Vi1 — Vi Vi = Vi
5Ap, ( Urm k+1/2( 1 — Vi) + U N 1/2( k= Vi-1)
(R, (3.100)
T, = Tk5k+RT“’“ (—) -Q
(Cp)k P/
1 .8p> (.519)
N op T —To) + (2 T —To)|, (3101
N (77877 k+1/2( k+1 k) 7]877 k—l/2( k 3 1) ( )
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By = (w)’+ (n)?, (3.102)

T Tr + T,
e _ & s , (3.103)
() @ \ 1+ (% - > Qk
op *
(na—) = Bk+1/2 Z [(5@Apg +Vy- WVHAB@]
N/ k+1/2 —
k
—> [0 Ape + V- 7VIIAB] (3.104)
=1
10 :
(f) - (-—p) Vi VL= Ci[6Ape+ V- 7VIIAB,],  (3.105)
P/ pom ), =1
Lol <k
Cvy = Pk 3.106
ke { ﬁv (= ( )
Hy = CuApy, (3.107)
T TR Wrals Apr T T
Dy, = Apg ng Co + FPZZ (Tk - Tk—l) (€k€+1 - Bk—l/Q)
Apy (e .
+m (Tk—H - Tk) (Eké - Bk+1/2) ) (3'108)

1, (<k

€k
R {0 0>k (3.109)

where notation such as (UT")" denotes a column vector with components (UyT})". In order
to complete the system, it remains to specify the reference vector A", together with the term
(1/pOp/0m), which results from the pressure gradient terms and also appears in the semi-implicit
reference vector b":

" (3.111)

1 1 B
(), - (.2
pom /), P) \OT /), Dk
=T
0 (3.112)

The matrices C™ and H" (i.e. with components Cy, and Hy,) must be evaluated at each time
step and each point in the horizontal. It is more efficient computationally to substitute the
definitions of these matrices into (3.96) and (3.105) at the cost of some loss of generality in
the code. The finite difference equations have been written in the form (3.95)-(3.112) because
this form is quite general. For example, the equations solved by Simmons and Striifing [1981]
at ECMWF can be obtained by changing only the vectors and hydrostatic matrix defined by
(3.109)-(3.112).
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3.1.8 Time filter

The time step is completed by applying a recursive time filter originally designed by [Robert,
1966] and later studied by [Asselin, 1972].

1

P =Y" +a @”‘ — oy w“) (3.113)

3.1.9 Spectral transform

The spectral transform method is used in the horizontal exactly as in CCM1. As shown earlier,
the vertical and temporal aspects of the model are represented by finite—difference approxima-
tions. The horizontal aspects are treated by the spectral-transform method, which is described
in this section. Thus, at certain points in the integration, the prognostic variables (¢ + f),d, 7T,
and II are represented in terms of coefficients of a truncated series of spherical harmonic func-
tions, while at other points they are given by grid—point values on a corresponding Gaussian
grid. In general, physical parameterizations and nonlinear operations are carried out in grid—
point space. Horizontal derivatives and linear operations are performed in spectral space. Ex-
ternally, the model appears to the user to be a grid—point model, as far as data required and
produced by it. Similarly, since all nonlinear parameterizations are developed and carried out in
grid—point space, the model also appears as a grid—point model for the incorporation of physical
parameterizations, and the user need not be too concerned with the spectral aspects. For users
interested in diagnosing the balance of terms in the evolution equations, however, the details are
important and care must be taken to understand which terms have been spectrally truncated
and which have not. The algebra involved in the spectral transformations has been presented in
several publications [Daley et al., 1976; Bourke et al., 1977; Machenhauer, 1979]. In this report,
we present only the details relevant to the model code; for more details and general philosophy;,
the reader is referred to these earlier papers.

3.1.10 Spectral algorithm overview

The horizontal representation of an arbitrary variable ¢ consists of a truncated series of spherical
harmonic functions,

PO = Y P (p)e™, (3.114)

m=—M n=|m)|

where 1 = sin¢, M is the highest Fourier wavenumber included in the east-west representa-
tion, and A (m) is the highest degree of the associated Legendre polynomials for longitudinal
wavenumber m. The properties of the spherical harmonic functions used in the representation
can be found in the review by Machenhauer [1979]. The model is coded for a general pentagonal
truncation, illustrated in Figure 3.2, defined by three parameters: M, K, and N, where M is
defined above, K is the highest degree of the associated Legendre polynomials, and N is the
highest degree of the Legendre polynomials for m = 0. The common truncations are subsets of
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N

0 M
Figure 3.2: Pentagonal truncation parameters

this pentagonal case:

Triangular: M =N =K,
Rhomboidal : K = N + M, (3.115)
Trapezoidal: N = K > M.

The quantity A (m) in (3.114) represents an arbitrary limit on the two-dimensional wavenumber
n, and for the pentagonal truncation described above is simply given by
N (m) = min (N + |m|, K).

The associated Legendre polynomials used in the model are normalized such that

1
| =1, (3.116)
-1
With this normalization, the Coriolis parameter f is

Q o

30



which is required for the absolute vorticity.
The coeflicients of the spectral representation (3.114) are given by

m ! 1 o —imA m
Un —/_15/0 YA, p)e” M AAPT () dp. (3.118)

The inner integral represents a Fourier transform,

27
V) = 5 [ eme (3.119)

which is performed by a Fast Fourier Transform (FFT) subroutine. The outer integral is per-
formed via Gaussian quadrature,

J

Uit =) W™ () P (g (3.120)

=1

where j1; denotes the Gaussian grid points in the meridional direction, w; the Gaussian weight
at point p;, and J the number of Gaussian grid points from pole to pole. The Gaussian grid
points (u;) are given by the roots of the Legendre polynomial P;(x), and the corresponding
weights are given by

2(1 — p?
[J Proa(p;)]
The weights themselves satisfy
J
> w;=20. (3.122)
j=1

The Gaussian grid used for the north—south transformation is generally chosen to allow un-
aliased computations of quadratic terms only. In this case, the number of Gaussian latitudes J
must satisfy

J>@N+K+M+1)/2 forM <2(K—N), (3.123)
J > (3K +1)/2 for M > 2(K — N). (3.124)

For the common truncations, these become

J>BK+1)/2 for triangular and trapezoidal, (3.125)
J > (BN +2M +1)/2 for rhomboidal. (3.126)

In order to allow exact Fourier transform of quadratic terms, the number of points P in the
east—west direction must satisfy
P>3M+1. (3.127)

The actual values of J and P are often not set equal to the lower limit in order to allow use of
more efficient transform programs.

Although in the next section of this model description, we continue to indicate the Gaus-
sian quadrature as a sum from pole to pole, the code actually deals with the symmetric and

31



antisymmetric components of variables and accumulates the sums from equator to pole only.
The model requires an even number of latitudes to easily use the symmetry conditions. This
may be slightly inefficient for some spectral resolutions. We define a new index, which goes
from —1I at the point next to the south pole to +1 at the point next to the north pole and not
including 0 (there are no points at the equator or pole in the Gaussian grid), i.e., let I = J/2
andi=j—J/2for j > J/2+1and i =j—J/2—1 for j < .J/2; then the summation in (3.120)
can be rewritten as

v, = Z " () Py (s Jw. (3.128)

i=—1I, i#0

The symmetric (even) and antisymmetric (odd) components of )™ are defined by

(Y +9m)

N | —

(Vp);" =

o)y = 5 (" = ). (3.129)

Since w; is symmetric about the equator, (3.128) can be rewritten to give formulas for the
coefficients of even and odd spherical harmonics:

I

> (We)! ()Pl (i) 2w;  for n —m even,
=T (3.130)

n I
> (Wo);" (1) Pl (pi)2w;  for n —m odd.
i=1

The model uses the spectral transform method [Machenhauer, 1979] for all nonlinear terms.
However, the model can be thought of as starting from grid—point values at time ¢ (consistent
with the spectral representation) and producing a forecast of the grid—point values at time ¢+ At
(again, consistent with the spectral resolution). The forecast procedure involves computation
of the nonlinear terms including physical parameterizations at grid points; transformation via
Gaussian quadrature of the nonlinear terms from grid—point space to spectral space; computation
of the spectral coefficients of the prognostic variables at time ¢ + At (with the implied spectral
truncation to the model resolution); and transformation back to grid—point space. The details
of the equations involved in the various transformations are given in the next section.

3.1.11 Combination of terms

In order to describe the transformation to spectral space, for each equation we first group
together all undifferentiated explicit terms, all explicit terms with longitudinal derivatives, and
all explicit terms with meridional derivatives appearing in the Dyn operator. Thus, the vorticity
equation (3.95) is rewritten

(™ =V o | W)~ (=5 ()] (3.131)
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where the explicit forms of the vectors V, V,, and V, are given as

Vo= (+nH" (3.132)
V, = 2Atnl, (3.133)
V, = 2Atng. (3.134)
The divergence equation (3.96) is
1 0 9

§"t = D+ —— | (D 1—p?)=—(D,)| — V2D

3 = Dt | D)+ -] - T
—AtV*(RH'T'"™ + R(b" + b)) II"*1). (3.135)

The mean component of the temperature is not included in the next-to-last term since the
Laplacian of it is zero. The thermodynamic equation (3.98) is

'n 1 8 a T mn
I = T o |+ (=)L) | - A g, (3.130)

The surface—pressure tendency (3.98) is

= ps— 2 (Aap")" 6t (3.137)
ﬂ-r

The grouped explicit terms in (3.135)—(3.137) are given as follows. The terms of (3.135) are

D = 1 (3.138)
D, = 2Atn}, (3.139)
D, = 2Atn}, (3.140)

Do — 2At [E" L1+ RHW_"”}

+ At [RH?" ((z’)”‘l . 2(1’)”) + R+ B (1 — QH”)} . (3.141)
The terms of (3.136) are
T = (I)"'+2AtD" — AtD" [5"' —26"] | (3.142)
T, = 2A4UT)", (3.143)
T, = 2A4VT)". (3.144)

The nonlinear term in (3.137) is
PS = 1" — 22t (8")" (&p") + (V) VII"z"AB|
—arf(ap)" & 207 (3.145)

33



3.1.12 Transformation to spectral space

Formally, Equations (3.131)-(3.137) are transformed to spectral space by performing the opera-
tions indicated in (3.146) to each term. We see that the equations basically contain three types
of terms, for example, in the vorticity equation the undifferentiated term V, the longitudinally
differentiated term V), and the meridionally differentiated term V,,. All terms in the original
equations were grouped into one of these terms on the Gaussian grid so that they could be
transformed at once.

Transformation of the undifferentiated term is obtained by straightforward application of
(3.118)-(3.120),

J
W = Z\_/m (1) P () wy. (3.146)

where V™(11;) is the Fourier coefficient of V with wavenumber m at the Gaussian grid line
;. The longitudinally differentiated term is handled by integration by parts, using the cyclic
boundary conditions,

8 " 1 o aV/\ —zm)\
{ﬁ%)} =5- | Gne N (3.147)
1 21 .
— imo - / Vie ™, (3.148)
(3.149)

so that the Fourier transform is performed first, then the differentiation is carried out in spectral
space. The transformation to spherical harmonic space then follows (3.152):

Rt

u])

where V'(y;) is the Fourier coefficient of V, with wavenumber m at the Gaussian grid line p;.
The latitudinally differentiated term is handled by integration by parts using zero boundary
conditions at the poles:

1 0 m 1 1 o

{a(l—/ﬂ)< )8,u( )}n /_1a(1—,u2)( “)au(—*) n G ( )
! apm

=— | (V)" (1= p?)—dp. 152
|t - 3.152)

Defining the derivative of the associated Legendre polynomial by

dP™

Hy' = (1—p)—" 3.153

(3.155) can be written

{ﬁ(l—;ﬁ)%(\_@)} = —Z(\_/H)m%wu (3.154)



Similarly, the V? operator in the divergence equation can be converted to spectral space by
sequential integration by parts and then application of the relationship

—n(n+1)

VEP! (n)e™ = P ()™, (3.155)

a

to each spherical harmonic function individually so that
J
{V’Do}) = Z (1) wj (3.156)

where Dg (1) is the Fourier coefficient of the original grid variable D .

3.1.13 Solution of semi-implicit equations

The prognostic equations can be converted to spectral form by summation over the Gaussian
grid using (3.146), (3.150), and (3.154). The resulting equation for absolute vorticity is

(C+ )" =VSy, (3.157)

where (¢ + f )nm denotes a spherical harmonic coefficient of (¢ + f)"*', and the form of VS, as
a summation over the Gaussian grid, is given as

B (uy) H(py)
Vs = [ (1) + im WY (1) —— o + VI () —2— | w. 3.158
Z J) ( ]) (1 _,MJQ) ,u( ])a(l _M]Q) J ( )
The spectral form of the divergence equation (3.135) becomes
8" = DS™ + At% [RH'T'™ + R (b + 1) TI™] (3.159)

where 0", T'", and II™ are spectral coefficients of 0"t '™ and II"*'. The Laplacian of
the total temperature in (3.135) is replaced by the equivalent Laplacian of the perturbation

temperature in (3.159). DS is given by

DS, = Z{ {Dm Iy %Q@(M)] P (uy)

: P (py) H7 (1)
D () M) pmy, oy e ) L 1

+umby ('u])a(l — sz) L, (Mj)a(l — M?) wj (3.160)

The spectral thermodynamic equation is
=TS - AtD"¢;), (3.161)

with TS defined as
: B (1) H ()

IS = {I” p15) By () — im T3 (pg) === + T (1) =% | wj, 3.162
]Z_; ( ]) ( ]) )\( J)a(l—ﬂ?) ,u( J)a(l_yg) J ( )
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while the surface pressure equation is

At
e = PSy — o (Ap") = (3.163)
— 7/ 7
where PS)" is given by
PSy = PS™ (1) P (p)wy. (3.164)
j=1

Equation (3.157) for vorticity is explicit and complete at this point. However, the remaining
equations (3.159)—(3.163) are coupled. They are solved by eliminating all variables except ¢/

m n n + 1 T m T T m
a8y =05y + &Y (e (1) 4 R+ 1) (PO, (3.165)
where
A, =T+ Ath RH'D" +R(V +1) ((ApT)T i)] , (3.166)
T

which is simply a set of K simultaneous equations for the coefficients with given wavenumbers
(m, n) at each level and is solved by inverting A,,. In order to prevent the accumulation of round—
off error in the global mean divergence (which if exactly zero initially, should remain exactly
zero) (A,)”" is set to the null matrix rather than the identity, and the formal application of
(3.165) then always guarantees ¢ = 0. Once " is known, T"" and II”* can be computed
from (3.161) and (3.163), respectively, and all prognostic variables are known at time n+1 as
spherical harmonic coefficients. Note that the mean component 7% is not necessarily zero since
the perturbations are taken with respect to a specified T".

3.1.14 Horizontal diffusion

As mentioned earlier, the horizontal diffusion in (3.88) and (3.91) is computed implicitly via
time splitting after the transformations into spectral space and solution of the semi-implicit
equations. In the following, the ( and 0 equations have a similar form, so we write only the §
equation:

(5% = ()0 = (—1) 28K [V (677 = (1) ()] (2/a?)] (3.167)

n

()7 = (T") ) = (1) 28t K@) [V2(T)] (3.168)
The extra term is present in (3.167), (3.171) and (3.173) to prevent damping of uniform
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rotations. The solutions are just

(6%) = K2 (0) ("), (3.169)
(T, = K3(T) (T (3.170)
= {1+2AtD K® K%) - %} }1 : (3.171)

= {1 + 2AtD, K@ (%) }_1 : (3.172)
{1 + 2AtD, K@ [(W)Q — %] }_1, (3.173)

KW (T) {1 + 2AtD, KW <w>2}1 : (3.174)

K (6) and KV (6) are both set to 1 for n = 0. The quantity D, represents the “Courant
number limiter”, normally set to 1. However, D,, is modified to ensure that the CFL criterion
is not violated in selected upper levels of the model. If the maximum wind speed in any of
these upper levels is sufficiently large, then D, = 1000 in that level for all n > n., where
ne = aAt / max |V'|. This condition is applied whenever the wind speed is large enough that
n. < K, the truncation parameter in (3.115), and temporarily reduces the effective resolution of
the model in the affected levels. The number of levels at which this “Courant number limiter”
may be applied is user-selectable, but it is only used in the top level of the 26 level CAM 3.0
control runs.

The diffusion of T is not complete at this stage. In order to make the partial correction
from 7 to p in (3.82) local, it is not included until grid-point values are available. This requires
that V*II also be transformed from spectral to grid-point space. The values of the coefficients
K® and K@® for the standard T42 resolution are 2.5 x 10°m?sec™ and 1.0 x 10"m®*sec™",
respectively.

3.1.15 Initial divergence damping

Occasionally, with poorly balanced initial conditions, the model exhibits numerical instability
during the beginning of an integration because of excessive noise in the solution. Therefore, an
optional divergence damping is included in the model to be applied over the first few days. The
damping has an initial e-folding time of At and linearly decreases to 0 over a specified number
of days, tp, usually set to be 2. The damping is computed implicitly via time splitting after the
horizontal diffusion.

1
_ _ _ 1
r max At(tD t)/tp, 0 (3.175)
N 1 N

37



3.1.16 Transformation from spectral to physical space

After the prognostic variables are completed at time n+ 1 in spectral space ((Q + f)*) . (09)r,
(T)7, (II"*1)™ they are transformed to grid space. For a variable v, the transformation is
given by

M

N m)
PO = D | DD P ()| e (3.177)

m=—M | n=|m)|

The inner sum is done essentially as a vector product over n, and the outer is again performed
by an FFT subroutine. The term needed for the remainder of the diffusion terms, V*II, is
calculated from

M| n(n+1) 2
4yn+1 n+1\"M pm imA
vt = Yy (T) (T )" P () | e, (3.178)
m=—M |n=|m)|
In addition, the derivatives of II are needed on the grid for the terms involving VII and V - VII,
U oIl V oIl
V. VII = — 1—p)—. 3.179
a(l —p?) 8)\+a(1—u2)( M)Gy ( )
These required derivatives are given by
o= > im | > TP () | €™, (3.180)
m=—M n=|m|
and using (3.153),

-3 = 3 [ mE | e (3.151)

m=—M |n=|m)|

which involve basically the same operations as (3.178). The other variables needed on the
grid are U and V. These can be computed directly from the absolute vorticity and divergence
coefficients using the relations

n(n+1)

C+ ), = —TQ/J?JFJT, (3.182)
O, = —wxnm, (3.183)

in which the only nonzero f)*is f{ = €/+/.375, and
_lox  (1—p*)oy

U= o (3.184)
1oy (1-p?)0x
Vet e o (3.185)
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Thus, the direct transformation is

M N(m) ) o ] . y
Vo= ZM n;m [Wé P (p) — m((Jrf)an (M)]e A

a o

M m .
Vo= —m:Z n:zm{ 1) C+f)?P£”(u)+méﬁflﬁ(u)lem. (3.187)

The horizontal diffusion tendencies are also transformed back to grid space. The spectral
coefficients for the horizontal diffusion tendencies follow from (3.167) and (3.168):

Fr, (T*)" = (=1)" K> [v* (T")]", (3.188)
Fo ((C+ 1) = (C) K95 (¢ ) = (1 (C+ 1) (20a) (3.189)
Fs, (6™ = (—1) K* {v% (6%) — (~1)" &* (2/a2)i} , (3.190)

using ¢ = 1 or 2 as appropriate for the V? or V* forms. These coefficients are transformed to
grid space following (3.114) for the T term and (3.186) and (3.187) for vorticity and divergence.
Thus, the vorticity and divergence diffusion tendencies are converted to equivalent U and V
diffusion tendencies.

3.1.17 Horizontal diffusion correction

After grid—point values are calculated, frictional heating rates are determined from the momen-
tum diffusion tendencies and are added to the temperature, and the partial correction of the V*
diffusion from 7 to p surfaces is applied to T'. The frictional heating rate is calculated from the
kinetic energy tendency produced by the momentum diffusion

Fr, = —u"_lFuH(u*)/c; — v"_vaH(v*)/c;, (3.191)
where F,,, and F,,, are the momentum equivalent diffusion tendencies, determined from F¢,

and Fj, just as U and V' are determined from ¢ and 4, and

=, [1+ (Cp 1) 7" 1 . (3.192)

These heating rates are then combined with the correction,

oT*
dp

Tyt =T + (2AtFr, ), + 24t (WB ) KOV, (3.193)
k
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The vertical derivatives of T* (where the * notation is dropped for convenience) are defined by

oT s
(755 ), = 2oy [P 7= 9] (3194
gL L[B (Tor — Th) + By_1 (T — Thoy) (3.195)
T 8p 2Apk k+% k+1 k ]4;_% k k—1 ) :
oT T
(ﬂB ap> A [BK% (T — TK,l)] . (3.196)

The corrections are added to the diffusion tendencies calculated earlier (3.188) to give the
total temperature tendency for diagnostic purposes:

; or*
Fr, (T*)g = Fr, (T*)x + (2AtFR,, ), + 2AtBy (w o ) KO, (3.197)
k

3.1.18 Semi-Lagrangian Tracer Transport

The forecast equation for water vapor specific humidity and constituent mixing ratio in the 7
system is from (3.36) excluding sources and sinks.

dq 8q dp 8q

prilie s +V -Vq +778 a =0 (3.198)
or

dq dq dq

. 1
gtV Vatig =0 (3.199)

dt 0

Equation (3.199) is more economical for the semi-Lagrangian vertical advection, as An does not
vary in the horizontal, while Ap does. Written in this form, the n advection equations look
exactly like the o equations.

The parameterizations are time-split in the moisture equation. The tendency sources have
already been added to the time level (n — 1). The semi-Lagrangian advection step is subdivided
into horizontal and vertical advection sub-steps, which, in an Eulerian form, would be written

¢ = ¢ 2AL(V - V)" (3.200)
and
on) '
In the semi-Lagrangian form used here, the general form is

¢ =Ly, ("), (3.202)
¢ =L, (q) - (3.203)

Equation (3.202) represents the horizontal interpolation of ¢" ! at the departure point calculated
assuming 77 = 0. Equation (3.203) represents the vertical interpolation of ¢* at the departure
point, assuming V' = 0.

40



The horizontal departure points are found by first iterating for the mid-point of the trajectory,
using winds at time n, and a first guess as the location of the mid-point of the previous time
step

Nt = A4 — Atu™ (N5, %) Jacos ¢l (3.204)
Pt = oa— A" (Xyy, ) Ja, (3.205)

where subscript A denotes the arrival (Gaussian grid) point and subscript M the midpoint of
the trajectory. The velocity components at (/\ﬁ/[, cp’jd) are determined by Lagrange cubic inter-
polation. For economic reasons, the equivalent Hermite cubic interpolant with cubic derivative
estimates is used at some places in this code. The equations will be presented later.

Once the iteration of (3.204) and (3.205) is complete, the departure point is given by

Ap = Aa — 2Atu" (Anr, o) /a COS Yy, (3.206)
©p = Aa — 2At0" (A, o00) /@, (3.207)

where the subscript D denotes the departure point.

The form given by (3.204)-(3.207) is inaccurate near the poles and thus is only used for
arrival points equatorward of 70° latitude. Poleward of 70° we transform to a local geodesic
coordinate for the calculation at each arrival point. The local geodesic coordinate is essentially
a rotated spherical coordinate system whose equator goes through the arrival point. Details
are provided in Williamson and Rasch [1989]. The transformed system is rotated about the
axis through ()\A -5 O) and ()\A + 3 O), by an angle ¢4 so the equator goes through (A4, va4).
The longitude of the transformed system is chosen to be zero at the arrival point. If the local
geodesic system is denoted by (X, ¢’), with velocities (u',v"), the two systems are related by

sing’ = singcospy — cospsingacos (Mg — A, (3.208)
sing = sing cospa + cos@’ sinsycos N, (3.209)
sin N cos¢®’ = —sin(Ag— \)coso , (3.210)
v'cos@d' = v[cospcospa+singsingycos(Ag — N)]
—usin gy sin (Ag — A), (3.211)
' cos N —v'sinNsing' = wcos(Ag— \) +ovsingsin (Mg — ) . (3.212)

The calculation of the departure point in the local geodesic system is identical to (3.204)-
(3.207) with all variables carrying a prime. The equations can be simplified by noting that
( :47Q0f4) = (070) by design and v’ ()‘/AvSO/A) = U()\A7QDA) and U,( /14790;0 = U<)‘A7Q0A)' The
interpolations are always done in global spherical coordinates.

The interpolants are most easily defined on the interval 0 < 6§ < 1. Define

where z is either A or ¢ and the departure point zp falls within the interval (x;, z;11). Following
(23) of [Rasch and Williamson, 1990] with r; = 3 the Hermite cubic interpolant is given by

o = Qi1 [3—2010° —diy [1i60* (1 - 0)]
+¢:i[3-2(1-0)](1-0)" +d; [h0(1-0)] (3.214)
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where ¢; is the value at the grid point x;, d; is the derivative estimate given below, and h; =
Tip1 — Ty-

Following (3.2.12) and (3.2.13) of Hildebrand [1956], the Lagrangian cubic polynomial inter-
polant used for the velocity interpolation, is given by

2
fo =>4 (@p) firg (3.215)
j=-1
where
éj (.TD) _ ({L‘D - xi—l) c. (ZL’D — xi—i—j—l) (CL’D - xi-{—j—i—l) . (CL’D — xi+2) (3216)

(Tirs = @ic1) oo (Tigj — Tigjo1) (Tigj — Tigj1) - - - (Tigy — Tiyo)

where f can represent either u or v, or their counterparts in the geodesic coordinate system.

The derivative approximations used in (3.214) for ¢ are obtained by differentiating (3.215)
with respect to zp, replacing f by ¢ and evaluating the result at xp equal z; and z;,,. With
these derivative estimates, the Hermite cubic interpolant (3.214) is equivalent to the Lagrangian
(3.215). If we denote the four point stencil (x;_1, 2, Ti11, Tiv2) by (71,22, 23, 24,) the cubic
derivative estimates are

“= @ —(Z;(aig)_(z)_(f)_ M)} a (3.217)
L ( . ) (22 - ) (1 : x4)} ¢ (3.218)
e —(5223)_(;2%?3%;4)_ x4)} a3 (3.219)
e —(22&;;1)—(2)_(23)_ 374)] 2 (3.220)

and

_ (23 — @3) (23 — 74)
d3 N (.1'1 - 56'2)(371 — Z'g)(xl — Q?4):| a (3221)

i (23 — 21) (73 — 24)
N :<x1 — 29) (o — x3) (29 — ;1;4)} 2 (3.222)
1 1 1
N | (x1 — 3) + (z0 —x3) (w3 — x4)] 93 (3.223)

(3.224)

(3 — 1) (3 — 22) )] “

_(1’1 - $4)($2 - $4)($3 — Ty

The two dimensional (), ¢) interpolant is obtained as a tensor product application of the
one-dimensional interpolants, with X interpolations done first. Assume the departure point falls
in the grid box (\;, \i11) and (¢;, v;+1). Four X\ interpolations are performed to find ¢ values
at (Ap,¢j—1), (Ap,¥j), (Ap,@j+1), and (Ap,pj42). This is followed by one interpolation in ¢
using these four values to obtain the value at (Ap, ¢p). Cyclic continuity is used in longitude.
In latitude, the grid is extended to include a pole point (row) and one row across the pole. The
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pole row is set equal to the average of the row next to the pole for ¢ and to wavenumber 1
components for v and v. The row across the pole is filled with the values from the first row
below the pole shifted 7 in longitude for ¢ and minus the value shifted by 7 in longitude for u
and v.

Once the departure point is known, the constituent value of ¢* = qg’l is obtained as indicated
in (3.202) by Hermite cubic interpolation (3.214), with cubic derivative estimates (3.215) and
(3.216) modified to satisfy the Sufficient Condition for Monotonicity with C° continuity (SCMO)
described below. Define A;q by

Nyg =Tt "4 (3.225)
Tip1 — X4
First, if A;q = 0 then
di=di =0 . (3.226)
Then, if either
d.
0< <3 3.227
S Rxq S (3.227)
or 4
0< <3 3.228
<5 o (3229

is violated, d; or d;,, is brought to the appropriate bound of the relationship. These conditions
ensure that the Hermite cubic interpolant is monotonic in the interval [z;, z;11].

The horizontal semi-Lagrangian sub-step (3.202) is followed by the vertical step (3.203). The
vertical velocity 7 is obtained from that diagnosed in the dynamical calculations (3.94) by

. . 3]7) (pk+1 —pk)
R Pt 7 Pk ) 3.229
ey = (15 / Zirl = (3.229)

with n, = Ax + Bi. Note, this is the only place that the model actually requires an explicit
specification of . The mid-point of the vertical trajectory is found by iteration

Mt =na — At" (nf) - (3.230)

Note, the arrival point 14 is a mid-level point where ¢ is carried, while the 7 used for the
interpolation to mid-points is at interfaces. We restrict n,; by

m < nu < Nk, (3.231)

which is equivalent to assuming that ¢ is constant from the surface to the first model level and
above the top ¢ level. Once the mid-point is determined, the departure point is calculated from

np = Na — 2At0" (nmr) (3.232)

with the restriction
m < np < k. (3.233)

The appropriate values of 77 and ¢ are determined by interpolation (3.214), with the derivative
estimates given by (3.215) and (3.216) for i = 2 to K — 1. At the top and bottom we assume
a zero derivative (which is consistent with (3.231) and (3.233)), d; = 0 for the interval k = 1,
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and 0;,1 = 0 for the interval k = K — 1. The estimate at the interior end of the first and last
grid intervals is determined from an uncentered cubic approximation; that is d;;; at the £ =1
interval is equal to d; from the k = 2 interval, and d; at the k = K — 1 interval is equal to d; 1
at the £k = K — 2 interval. The monotonic conditions (3.227) to (3.228) are applied to the ¢
derivative estimates.

3.1.19 Mass fixers

This section describes original and modified fixers used for the Eulerian and semi-Lagrangian
dynamical cores.

Let 7%, Ap® and ¢° denote the values of air mass, pressure intervals, and water vapor specific
humidity at the beginning of the time step (which are the same as the values at the end of the
previous time step.)

7, ApT and ¢* are the values after fixers are applied at the end of the time step.

7, Ap~ and ¢~ are the values after the parameterizations have updated the moisture field
and tracers.

Since the physics parameterizations do not change the surface pressure, 7~ and Ap~ are also
the values at the beginning of the time step.

The fixers which ensure conservation are applied to the dry atmospheric mass, water vapor
specific humidity and constituent mixing ratios. For water vapor and atmospheric mass the
desired discrete relations, following Williamson and Olson [1994] are

/7T+—/q+Ap+ = P, (3.234)

2 3

/q+Ap+ = /q_Ap_, (3.235)

3 3

where P is the dry mass of the atmosphere. From the definition of the vertical coordinate,
Ap = poAA + 7AB, (3.236)

and the integral [ denotes the normal Gaussian quadrature while [ includes a vertical sum

2 3
followed by Gaussian quadrature. The actual fixers are chosen to have the form
T (A ) = M7t (A ), (3.237)

preserving the horizontal gradient of II, which was calculated earlier during the inverse spectral
transform, and

- Nen) =4 " +angt|qt —q | (3.238)

In (3.237) and (3.238) the () denotes the provisional value before adjustment. The form (3.238)
forces the arbitrary corrections to be small when the mixing ratio is small and when the change
made to the mixing ratio by the advection is small. In addition, the 7 factor is included to make
the changes approximately proportional to mass per unit volume [Rasch et al., 1995]. Satisfying
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(3.234) and (3.235) gives

[ aAp — [ GTppAA—M [¢t7TAB
3 3 3
a

= — — _ 3.239
S natlqt —a | peAA+ M [ngt|gt — g |7t AB ( )
3 3

M = P—}—/q_Ap_ //fr+ (3.240)
3 2

Note that water vapor and dry mass are corrected simultaneously. Additional advected con-
stituents are treated as mixing ratios normalized by the mass of dry air. This choice was made
so that as the water vapor of a parcel changed, the constituent mixing ratios would not change.
Thus the fixers which ensure conservation involve the dry mass of the atmosphere rather than
the moist mass as in the case of the specific humidity above. Let x denote the mixing ratio of
constituents. Historically we have used the following relationship for conservation:

/x*(l —q")ApT = /X_(l —q )Ap . (3.241)

3 3

and

The term (1 — q)Ap defines the dry air mass in a layer. Following Rasch et al. [1995] the change
made by the fixer has the same form as (3.238)

X)) =X e IXT - X7 (3.242)

Substituting (3.242) into (3.241) and using (3.237) through (3.240) gives

x 1=qg)Ap = [ XT(1—=g")Ap T+ [ XTng"|¢gt — ¢ |Ap
3 AB AB

xRt =Xl =) Ap —a [ gttt = x"Ingtlat — g |Ap
A,B A,B

(07

(3.243)

where the following shorthand notation is adopted:

/( )Ap=/( )poAA+M/( )psAB . (3.244)

AB 3

We note that there is a small error in (3.241). Consider a situation in which moisture is
transported by a physical parameterization, but there is no source or sink of moisture. Under
this circumstance ¢~ # ¢°, but the surface pressure is not allowed to change. Since (1 —
g )Ap~ # (1 — ¢°)Ap°, there is an implied change of dry mass of dry air in the layer, and
even in circumstances where there is no change of dry mixing ratio y there would be an implied
change in mass of the tracer. The solution to this inconsistency is to define a dry air mass only
once within the model time step, and use it consistently throughout the model. In this revision,
we have chosen to fix the dry air mass in the model time step where the surface pressure is
updated, e.g. at the end of the model time step. Therefore, we now replace (3.241) with

/X+(1 —q")ApT = /X_(l —")Ap° . (3.245)
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There is a corresponding change in the first term of the numerator of (3.243) in which
q~ is replace by ¢°. CAM 3.0uses (3.243) for water substances and constituents affecting the
temperature field to prevent changes to the IPCC simulations. In the future, constituent fields
may use a corrected version of (3.243).

3.1.20 Energy Fixer

Following notation in section 3.1.19, the total energy integrals are

| 1
/5 {cpT+ + 0,4+ (u+2 + v+2>} Apt = E (3.246)
1 _ 1y o o _
E=/[=|eT +<I>s+§<u +o ) Ap~ + 8 (3.247)
g
3

S = / [(FSNT — FLNT) — (FSNS — FLNS — SHFLX — py,0L,PRECT) —] At (3.248)
2

where S is the net source of energy from the parameterizations. F'SNT' is the net downward
solar flux at the model top, FFLNT is the net upward longwave flux at the model top, FSNS
is the net downward solar flux at the surface, FFLNS is the net upward longwave flux at the
surface, SH F'LX is the surface sensible heat flux, and PREC'T is the total precipitation during
the time step. From equation (3.237)

7t (N p) = M#at (A ) (3.249)

and from (3.236)
Ap = ppAA + TAB (3.250)

The energy fixer is chosen to have the form

T (\p) = TH+8 (3.251)
Wt pn) = it (3.252)
vt (A\pm) = 0T (3.253)

Then

gE — [ [cpT+ + 0,41 <a+2 + @+2>} PAA— M [ [cpT+ + 0,41 (a+2 + @+2>} ATAB
=t :

fcppOAA + MfcpfrJrAB
3 3
(3.254)
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3.1.21 Statistics Calculations

At each time step, selected global average statistics are computed for diagnostic purposes when
the model is integrated with the Eulerian and semi-Lagrangian dynamical cores. Let fs denote
a global and vertical average and f2 a horizontal global average. For an arbitrary variable 1,
these are defined by

dV = ZK: ZJ: ZI: Vijrw; (%) / 21, (3.255)

and

J I
/ YdA =" i, /21, (3.256)
2

j=1 i=1

where recall that p
> wy=2. (3.257)
j=1

The quantities monitored are:

- 1/2
global rms ({ + f)(s7') = /(C” + f)QdV] : (3.258)
L/3
- 1/2
global rms 0(s™!) = /(5”)2dV} : (3.259)
L/3
- 1/2
global rms T (K) = / (T" + T’”)de} : (3.260)
L/3
global average mass times g (Pa) = / m"dA, (3.261)
2
global average mass of moisture (kg m~?) = /W"q"/ng. (3.262)
3

3.1.22 Reduced grid

The Eulerian core and semi-Lagrangian tracer transport can be run on reduced grids. The
term reduced grid generally refers to a grid based on latitude and longitude circles in which the
longitudinal grid increment increases at latitudes approaching the poles so that the longitudinal
distance between grid points is reasonably constant. Details are provided in [Williamson and
Rosinski, 2000]. This option provides a saving of computer time of up to 25%.

3.2 Semi-Lagrangian Dynamical Core

3.2.1 Introduction

The two-time-level semi-implicit semi-Lagrangian spectral transform dynamical core in CAM
3.0 evolved from the three-time-level CCM2 semi-Lagrangian version detailed in Williamson
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and Olson [1994] hereafter referred to as W&094. As a first approximation, to convert from a
three-time-level scheme to a two-time-level scheme, the time level index n-1 becomes n, the time
level index n becomes n—|—%, and 2At becomes At. Terms needed at n—i—% are extrapolated in time
using time n and n-1 terms, except the Coriolis term which is implicit as the average of time n
and n—+1. This leads to a more complex semi-implicit equation to solve. Additional changes have
been made in the scheme to incorporate advances in semi-Lagrangian methods developed since
W&QO94. In the following, reference is made to changes from the scheme developed in W&094.
The reader is referred to that paper for additional details of the derivation of basic aspects of
the semi-Lagrangian approximations. Only the details of the two-time-level approximations are
provided here.

3.2.2 Vertical coordinate and hydrostatic equation

The semi-Lagrangian dynamical core adopts the same hybrid vertical coordinate (1) as the
Eulerian core defined by

p(n,ps) = A(N)po + B(n)ps , (3.263)

where p is pressure, p, is surface pressure, and p, is a specified constant reference pressure. The
coefficients A and B specify the actual coordinate used. As mentioned by Simmons and Burridge
[1981] and implemented by Simmons and Strifing [1981] and Simmons and Striifing [1983], the
coefficients A and B are defined only at the discrete model levels. This has implications in the
continuity equation development which follows.

In the 7 system the hydrostatic equation is approximated in a general way by

K
O =+ R Hu(p) Tu (3.264)

=k

where k is the vertical grid index running from 1 at the top of the model to K at the first model
level above the surface, @, is the geopotential at level k, ®, is the surface geopotential, T}, is the
virtual temperature, and R is the gas constant. The matrix H, referred to as the hydrostatic
matrix, represents the discrete approximation to the hydrostatic integral and is left unspecified
for now. It depends on pressure, which varies from horizontal point to point.

3.2.3 Semi-implicit reference state

The semi-implicit equations are linearized about a reference state with constant 7" and p’. We
choose
T" =350K, p.=10"Pa (3.265)

3.2.4 Perturbation surface pressure prognostic variable

To ameliorate the mountain resonance problem, Ritchie and Tanguay [1996] introduce a pertur-
bation In p, surface pressure prognostic variable

Inp, = Inp,—Inp} (3.266)
P

Inpt = —— 3.267

np; BT (3.267)
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The perturbation surface pressure, Inp’, is never actually used as a grid point variable in the
CAM 3.0 code. It is only used for the semi-implicit development and solution. The total In p,
is reclaimed in spectral space from the spectral coefficients of ®, immediately after the semi-
implicit equations are solved, and transformed back to spectral space along with its derivatives.
This is in part because V4np, is needed for the horizontal diffusion correction to pressure
surfaces. However the semi-Lagrangian CAM 3.0 default is to run with no horizontal diffusion.

3.2.5 Extrapolated variables
Variables needed at time (n + %) are obtained by extrapolation

CrH=(or-g 0 (3.268)

3.2.6 Interpolants

Lagrangian polynomial quasi-cubic interpolation is used in the prognostic equations for the
dynamical core. Monotonic Hermite quasi-cubic interpolation is used for tracers. Details are
provided in the Eulerian Dynamical Core description. The trajectory calculation uses tri-linear
interpolation of the wind field.

3.2.7 Continuity Equation

The discrete semi-Lagrangian, semi-implicit continuity equation is obtained from (16) of W&094
modified to be spatially uncentered by a fraction ¢, and to predict In p/,

n+1 n q)s
ABZ {(lnplsz)A - |:<lnpsl) + RTT:|D2} /At:

s @Il GRL) e
1

"2 AB il
—5Ap) +—=——(V,-Vd,),,.°2
l l Mo <R7V l Mo

1 n+1 1 n 1 n+%
14+¢€) | =0 Apr> +(1—e¢ (—5 Ap’“) — (—(5 Ap’") }
( ) (pg 1 1 A ( ) pg l 1 D2 pqsn l 1 M2

where

(3.270)
and

( nt=slaraC BEra-a0 pe (3271)

A( ), denotes a vertical difference, | denotes the vertical level, A denotes the arrival point, Do
the departure point from horizontal (two-dimensional) advection, and M, the midpoint of that
trajectory.
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The surface pressure forecast equation is obtained by summing over all levels and is related
o (18) of W&094 but is spatially uncentered and uses In p/,

K K n

) 1 1 .0p
lnp))"t = E:AB[ln 3 )"+ } ——AtE:[l—eA(— —>]
(Inpy) 2 1 | (Inps,) T 5 (1—e) psnﬁnlD2

—Atz ( 51Apl)

—Ati ~{3laro@rtva-aan] - @t far

nti
2 B n+

A P2 272
+ tZRT (V,-V &) (3.272)

Mo

The corresponding (iﬁg—f;) equation for the semi-implicit development follows and is related

o (19) of W&094, again spatially uncentered and using in p..

1. op\""! 2 o e oD,
(L+e) (psn6n> __E{B"+5 (npl)}" =D ABr|(npy)" + g Dy

tle Gl
—zi(ismpl); +zz (V,-V ®,)

This is not the actual equation used to determine (p%ﬁg—g) in the code. The equation actually

used in the code to calculate (ih%) involves only the divergence at time (n41) with (In p,)"*"'

eliminated.
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1 8 n+1
(1+0) (—fz—p) -
Ds 677 k+1
L .
2 i)
— - B AB; |(In p,)" :
At _l:1 k‘+% 12:1:_ l |:(np l) _I_ RTT:|D2
[k K 7 n
1 .0p
[ - g frs (2]
_lzl " lzl_ DPs 87] 4 Dy
[k K1 /1 n+3
~2(> " = By <—51Apl> (3.274)
LI=1 =1 ] Ps Mz
- -
AB ntl
+2 Z — Biyy Z RT:" (V- V ®y)y,°
Li=1 =1
[k K 7 1 1 .
2|3 - B Y| {5 [aro@ntra-oen] - et ban
Li=1 =11 *93

n

¢ 41O (V.Y @S)n+%] is treated as a unit, and follows from

The combination [(ln Ds) + R T 2RTT
Dy

(3.271).

3.2.8 Thermodynamic Equation

The thermodynamic equation is obtained from (25) of W& 094 modified to be spatially uncen-
tered and to use Inp/. In addition Hortal’s modification [Temperton et al., 2001] is included, in

which
d
ETE psBa_T CI)S
dt dp ref RTT"

(3.275)

is subtracted from both sides of the temperature equation. This is akin to horizontal diffusion
which includes the first order term converting horizontal derivatives from eta to pressure co-

ordinates, with (In ps) replaced by — If:,f” and (png—z> ; taken as a global average so it is

invariant with time and can commute with the differential operators.
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n+1

T T or\ @, ory o, |
P S R — (psB(n) 2= = (pB() At
At B, vy BT || pB5 s BT7|
1 oT B ory 1"
B ) V-V, + o0 (pBln) -
TR (p (1) ap)fgf Vo, + "o (p () ap)mf ;
1
RT,w\"*2
()
% P/ oy
B t
RT™ pl, dy In p! 1 .0p
bs i p sy (= 3.276
+ — )=+ e (3.276)
EBION
o v [\ps) \p/)]u
RT" " 1 s
- &B(n)[ V-chs]
cp D RT" My

Note that Q™ represents the heating calculated to advance from time n to time n 4+ 1 and is
valid over the interval.

The calculation of (psB%—g> follows that of the ECMWEF (Research Manual 3, ECMWF

ref

Forecast Model, Adiabatic Part, ECMWF Research Department, 2nd edition, 1/88, pp 2.25-
2.26) Consider a constant lapse rate atmosphere
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» Ry/g
T To (—) (3.277)
Po
oT 1R Rl
- -2, (3) (3.278)
Ip Py Do
oT . R
p,BS— = pPp (3.279)
Ip p g
8T) (ps)ref R’Y
B— —(Ty)res for (Tip)res > T 3.280
( Op ) ey “(Dr)rer 9 Tires for (Tires > T (3.280)
T
(psBa_) 0 fO?“ (Tk)ref < TC (3281)
ap ref
(Dr)res Arpo + Bi(ps)res (3.282)
(Tx) T ((p res ) o (3.283)
el (ps)ref
(Ds)res 1013.25mb (3.284)
To 288K (3.285)
Po 1000mb (3.286)
v 6.5K /km (3.287)
Te 216.5K (3.288)

3.2.9 Momentum equations

The momentum equations follow from (3) of W&094 modified to be spatially uncentered, to use
Inp’,, and with the Coriolis term implicit following Coté and Staniforth [1988] and Temperton
[1997]. The semi-implicit, semi-Lagrangian momentum equation at level k£ (but with the level
subscript k suppressed) is
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~

{ +(1—e)[fk><V} }+F}}4
D
B s
{ (1+¢€) [V (b + RHy - T,) + RTvEpsVIHps}
A

B nra
+(1—¢) |V (®,+ RH,-T,) + RTv;psvmps] }
D

—5{ (1+€¢) VI[RH},- T + RT"Inp]""" (3.289)
— (14 V[®, + RH} - T + RT" Inp,]"*?
+(1— €V [®,+ RH},- T+ RT" lnp,]"

— (1= ) V[®+ RH}-T + RT" lnp,]""* }

The gradient of the geopotential is more complex than in the o system because the hydro-
static matrix H depends on the local pressure:

V(H, T,) =H; [(1+64q)VT +¢TVq +T, VH, (3.290)

where €, is (R,/R — 1) and R, is the gas constant for water vapor. The gradient of T is
calculated from the spectral representation and that of ¢ from a discrete cubic approximation
that is consistent with the interpolation used in the semi-Lagrangian water vapor advection. In
general, the elements of H are functions of pressure at adjacent discrete model levels

Hiy = fru(Pis1/2, 01, 01-1/2) (3.291)

The gradient is then a function of pressure and the pressure gradient

VHy = gkl<pz+1/27 Dy Pryyos sz+1/27 szv Vpl_1/2> (3-292)

The pressure gradient is available from (3.263) and the surface pressure gradient calculated from
the spectral representation

Vp, = B)Vps = BipsV Inpy (3.293)

3.2.10 Development of semi-implicit system equations

The momentum equation can be written as

Vn+1_vn 1 . n+1 . n
A D _ _ = _
N 2{(1+e)[fk><VL L (1—e) [kaV]D}
1 "
—5{ (1+€) V[RH} - T + RT" Inp]""! } + RHSy | (3.204)
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where RH Sy contains known terms at times (n + 1) and (n).
By combining terms, 3.294 can be written in general as

n+1

U, VT = U, V0, U, TV (3.295)

where i and j denote the spherical unit vectors in the longitudinal and latitudinal directions,
respectively, at the points indicated by the subscripts, and 4 and V denote the appropriate
combinations of terms in 3.294. Note that Z/{Z+1 is distinct from the ¢,. Following Bates et al.
[1990], equations for the individual components are obtained by relating the unit vectors at the

~ ~

departure points (i,.j,) to those at the arrival points (i,.j,):

i, =a"i, + 8], (3.296)
ip =%, + 8%, . (3.297)

~

in which the vertical components (k) are ignored. The dependence of a’s and 3’s on the latitudes
and longitudes of the arrival and departure points is given in the Appendix of Bates et al. [1990].

W&094 followed Bates et al. [1990] which ignored rotating the vector to remain parallel to
the earth’s surface during translation. We include that factor by keeping the length of the vector
written in terms of (%A,3A> the same as the length of the vector written in terms of (%D,.}D).

Thus, (10) of W&094 becomes

U =U, +vyaU, +ya’V,
VT =V, 98U, + 980V, (3.298)
where )
U +v? 2
N = - —2 - 3 (3.299)
(L{DozA + VDaA) + (UDBA + VDBA)

After the momentum equation is written in a common set of unit vectors

1 N n+1 1 n
A

Drop the ()" from the notation, define
a=(1+¢) AtQ (3.301)

and transform to vorticity and divergence

, o 1 [
(+asinpd + —vcosy =
a @ cos

oR: 0
U o * . 2
NGE (R} cos gp)} (3.302)

1 n
6 — asing( + “ucosy + < ge) AtV [RH}, - T + RT lnp)""
a

! [aR;

O o
o\ + 7 (R} cos go)] (3.303)

acos ¢
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Note that
10

9 cosp 0 ,_,
_ 190 _Cosp 0 304
U Cos ¢ o (V729) E (V%) (3.304)
1 0 cosp 0 g
veosY = vV — (V™% 3.305
o= Lt (VO 5, (V) (3.305)
Then the vorticity and divergence equations become
a 0 acosy 0
) — (V7%
¢+ asinpd + 28)\(V ) + o 890(V )
1 OR: 0 ,_, B
T [ N s (R, cos go)] =L (3.306)
5—asinge + 20 (v2g) - 2800 gy (LN \iw2 (rEL T 4 BT g
ST 2N a? Oy 2 A
1 OR: 0 ,_. B
= oo [ I + 70 (R cos cp)} =M (3.307)

Transform to spectral space as described in the description of the Eulerian spectral transform
dynamical core. Note, from (4.5b) and (4.6) on page 177 of Machenhauer [1979]

pby = Dy Pl + Db, (3.308)
1
n? —m?\?
D" = | ——— '
; ( T ) (3.309)
and from (4.5a) on page 177 of Machenhauer [1979]
8 m m m m m
(1=1%) g Pt = =D Pl + (n 1) DY, (3.310)

Then the equations for the spectral coefficients at time n 4 1 at each vertical level are

mao n+1
il - — o D" o D" = Lr 3.311
Cn ( n<n+1)> + n—i—la (n+1) n+1+ n—la( n ) n n ( )

mo n n+1

omlf1T— —)1 - — | D, = D™ 312
n ( n<n+ 1)> <n+1a <n+ 1) n+1 Cnfloé ( n > n (3 3 )

1 1

—( ;6> At”("a;“ ) [RH},-T? + RT"Inp"] = M
m 1 At

Inpl," = PS?—( ;6) p_r(AP’")Ténm (3.313)

1
" = TS — ( ;6) AtD"9" (3.314)

o6



The underbar denotes a vector over vertical levels. Rewrite the vorticity and divergence equa-
tions in terms of vectors over vertical levels.

Tmao n n+1
Ol - —) = — | =D D" 3.315
Yn ( n(n_'_:[)) £n+104 <n_'_1> Tl+1_n_1a< —n ) n ( )
1 1
—( ;€> A D rpprern 4 R = DT
a

1o n n+1
"] - — o — | D" o Dmo= m 31
gn < n(n+1)) +—n+1a <TL+].) n+1+—n—1a < n ) n V—Sn (33 6)

Define h," by

gh' = RH'T" + RT" Inp." (3.317)
and
mao
mo]o 31
A n(n+1) (3:318)
oo ——) Dp 1
57 —a () o, (3319)
. 1
B =a <" il ) okt (3.320)
n

Then the vorticity and divergence equations are

AC + BYron  + BT o, = VS (3.321)
mgm m em _m m 1+4+¢€ n (n —+ 1) m
An én - B+n §n+18 n Qn—l - < 2 ) At a2 ghn = D_SZI (3322)

Note that these equations are uncoupled in the vertical, i.e. each vertical level involves variables
at that level only. The equation for h;' however couples all levels.

1
gh™ = — ( ‘2”) At o" + RH'TS™ + RT"PST" (3.323)

Define C" and HS" so that

Apr)”
RH'D" + RIT%

S

ghy' = — (1 ;L 6) AtC'o) + HS) (3.324)

Let gD, denote the eigenvalues of C" with corresponding eigenvectors ®, and ® is the matrix
with columns @,

o= (2, 0,... 9, ) (3.325)

and gD the diagonal matrix of corresponding eigenvalues
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0 Dy--- 0
gD = g . . . . (3.326)
0 0---Dy
C'®d = dgD (3.327)
& 'C'® = gD (3.328)
Then transform
"=ai¢m VS =@'Vsy (3.329)
g, =®'om | DS, =& 'DSI (3.330)
hy =@ 'p" | HS, =® 'HS" (3.331)
A"+ BIS +BT = VS, (3.332)
m M mTm _m ~m 1+€ (n—l—l) ~m -~ m
Aps, =B BT - - ( 5 )At o—gh, = DS, (3.333)
zm 1+e —1 —1cm T
ghy +( —— | At@7ICTRR7ST = HS, (3.334)

~m 1 -m 1 —m
g < ‘2”) AtDS" — -HS (3.335)
Since D is diagonal, all equations are now uncoupled in the vertical.

For each vertical mode, i.e. element of (7)™, and for each Fourier wavenumber m we have
a system of equations in n to solve. In following we drop the Fourier index m and the modal

element index (), from the notation.

AnGo + B wbpp1 + B 06y = VS, (3.336)

Any — B Cosi B nCoy — (1 ; 6) At%gﬁn ~ DS, (3.337)
= 1 ~ 1~

on + ( "2“) AMDS, = S, (3.338)

The modal index ( ), was included in the above equation on D only as a reminder, but will also
be dropped in the following.
Substitute ¢ and & into the § equation.

1 2 1 3
An+< ‘2“) (Atf@ D+ B AL By + B AL B+n_1] 5

+ (BYA b B 1) dpse + (B wA B 1) 6ns (3.339)

a?

:L%n+(1;€>ms (”“)Hs + BT AT VS + B AT VS,
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which is just two tri-diagonal systems of equations, one for the even and one for the odd n’s,

andm<n<N

At the end of the system, the boundary conditions are

n=m,

B ,=B=0

n=m + ]_, B_n_l - B_z - B_?:n—i-l)—l - 0

the 0,_, term is not present, and from the underlying truncation

5x+1 - S?\?—H =0

For each m and ¢ we have the general systems of equations

( N+1
n=m,m+2,.., or
- An8n+2 + Bngn - Cn - Sn—2 - Dn 5 N +]3v + 1
n=m+1m+3, .., or
L N+2
C'm: m—+1 0
ONg1=0ny2 = 0
Assume solutions of the form 3 )
611 = En5n+2 + Fn
then
A
E, = .
Bn
D,
FM — B—m
N -2
E, = # n=m-+2 m-+4 or
" Bn_CnEn—Q ’ ’ Y N—3
Dn+CnFn72 N
F, = ——— , n=m+2m+4,.., or
Bn_CnEan N—1
SN =Fy or SN—l =FIn1,
( m
n=N-—-2N—4,.., or
% % m+1
5n_En5n+2+Fnu m+1
n=N-3N-5,.., or
L m

99

(3.340)

(3.341)

(3.342)

(3.343)
(3.344)

(3.345)

(3.346)

(3.347)

(3.348)

(3.349)

(3.350)

(3.351)



Divergence in physical space is obtained from the vertical mode coefficients by

o =®4, (3.352)

The remaining variables are obtained in physical space by

m mmao _ emsm n mom n+1 m
Cn (1—m> = L7 =0« <—n_|_1>Dn+l 5n_104< - )Dn (3.353)

o~ TS - (1 - ) ALDT (3.354)
m 1 At
Inp!™ = PS?—( +€) F(ApT)TQZL (3.355)

3.2.11 Trajectory Calculation
The trajectory calculation follows Hortal [1999] Let R denote the position vector of the parcel,

dR
— =V 3.356
7 (3.356)
which can be approximated in general by
1
R} = R — AtV 2 (3.357)
Hortal’s method is based on a Taylor’s series expansion
dR\" At? (d®*R\"
= RY 4+ At — — | —= o :
R} =R} + (dt)D+ 5 (dtQ)D+ (3.358)
or substituting for dR/dt
At? (dV\"
RIVM=R)+AtVH+ — [ — | +... (3.359)
2 at ),
Approximate
dv\" Vi -Vl
<E)D SR (3.360)
giving
n—&-% 1 n n—1 n
Vi’=3 (v =V Y+ VY] (3.361)

for the trajectory equation.

3.2.12 Mass and energy fixers and statistics calculations

The semi-Lagrangian dynamical core applies the same mass and energy fixers and statistical
calculations as the Eulerian dynamical core. These are described in sections 3.1.19, 3.1.20, and
3.1.21.
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3.3 Finite Volume Dynamical Core

3.3.1 Overview

This document describes the Finite-Volume (FV) dynamical core that was initially developed
and used at the NASA Data Assimilation Office (DAO) for data assimilation, numerical weather
predictions, and climate simulations. The finite-volume discretization is local and entirely
in physical space. The horizontal discretization is based on a conservative *“fluz-form semi-
Lagrangian” scheme described by Lin and Rood [1996] (hereafter LR96) and Lin and Rood
[1997] (hereafter LR97). The vertical discretization can be best described as Lagrangian with
a conservative re-mapping, which essentially makes it quasi-Lagrangian. The quasi-Lagrangian
aspect of the vertical coordinate is transparent to model users or physical parameterization de-
velopers, and it functions exactly like the n — coordinate (a hybrid o — p coordinate) used by
other dynamical cores within CAM.

In the current implementation for use in CAM, the FV dynamics and physics are “time
split” in the sense that all prognostic variables are updated sequentially by the “dynamics”
and then the “physics”. The time integration within the FV dynamics is fully explicit, with
sub-cycling within the 2D Lagrangian dynamics to stabilize the fastest wave (see section 3.3.4).
The transport for tracers, however, can take a much larger time step (e.g., 30 minutes as for the
physics).

3.3.2 The governing equations for the hydrostatic atmosphere

For reference purposes, we present the continuous differential equations for the hydrostatic 3D
atmospheric flow on the sphere for a general vertical coordinate ¢ (e.g., Kasahara [1974]). Using
standard notations, the hydrostatic balance equation is given as follows:

10p

el 3.362
paz+g : ( )

where p is the density of the air, p the pressure, and g the gravitational constant. Introducing

the “pseudo-density” m = g—’g (i.e., the vertical pressure gradient in the general coordinate), from
the hydrostatic balance equation the pseudo-density and the true density are related as follows:
0P
T=——p, 3.363
ac” (3.363)

where ® = gz is the geopotential. Note that 7 reduces to the “true density” if ( = —gz, and
the “surface pressure” P, if ( = 0 (¢ = £-). The conservation of total air mass using 7 as the
prognostic variable can be written as

Sty (Va) =0, (3.364)

ﬁ
where V = (u,v, %). Similarly, the mass conservation law for tracer species (or water vapor)

can be written as

%(ﬂq) +V- (‘_/>7Tq> =0, (3.365)
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where ¢ is the mass mixing ratio (or specific humidity) of the tracers (or water vapor).
Choosing the (virtual) potential temperature © as the thermodynamic variable, the first law
of thermodynamics is written as

O w)+v- (Vr) =0 (3.366)

Letting (), ) denote the (longitude, latitude) coordinate, the momentum equations can be
written in the “vector-invariant form” as follows:

g 1 0 10 d¢ Ou

QU—QU— ACOch |:5 </€+(I)—VD>+;5P:| —%a—c, (3367)
9 170 10 1 dow
E’U——QU—Z |:% (KJ—F@—I/D)—F;%]?} —aa—c, (3368)

where A is the radius of the earth, v is the coefficient for the optional divergence damping, D
is the horizontal divergence

1 0 0
D = Tooed {ﬁ(u) + %(v cos@)} :

1
m:§(u2—|—v2),

and (), the vertical component of the absolute vorticity, is defined as follows:

. 1 0 0
0 = 2w sind + Teosd [ﬁv — %(u 0089)} :

where w is the angular velocity of the earth. Note that the last term in (3.367) and (3.368)
vanishes if the vertical coordinate ( is a conservative quantity (e.g., entropy under adiabatic
conditions [Hsu and Arakawa, 1990] or an imaginary conservative tracer), and the 3D divergence
operator becomes 2D along constant ( surfaces. The discretization of the 2D horizontal transport
process is described in section 3.3.3. The complete dynamical system using the Lagrangian
control-volume vertical discretization is described in section 3.3.4. A mass, momentum, and
total energy conservative mapping algorithm is described in section 3.3.5.

3.3.3 Horizontal discretization of the transport process on the sphere

Since the vertical transport term would vanish after the introduction of the vertical Lagrangian
control-volume discretization (see section 3.3.4), we shall present here only the 2D (horizontal)
forms of the FFSL transport algorithm for the transport of density (3.364) and mixing ratio-like
quantities (3.365) on the sphere. The governing equation for the pseudo-density (3.364) becomes

0 1 0 0
pred + Toosd a(mr) + %(UT{' cosf)| = 0. (3.369)

The finite-volume (integral) representation of the continuous 7 field is defined as follows:
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i 1 ' 9
7(t) = TAI A eosd //W(t, A, 0)A%cosO didA. (3.370)

Given the ezact 2D wind field ‘_/(t; A, 0) = (U, V) the 2D integral representation of the conser-
vation law for 7 can be obtained by integrating (3.369) in time and in space

o 1 t+At N
R N0V -dl| dt. 3.371
N N e /t []{ A OV - (3.571)

The above 2D transport equation is still exzact for the finite-volume under consideration. To
carry out the contour integral, certain approximations must be made. LR96 essentially decom-
posed the flux integral using two orthogonal 1D flux-form transport operators. Introducing the
following difference operator

Az Ax

024 = q(v + 7) —q(r — 7),

and assuming (u*,v*) is the time-averaged (from time ¢ to time t + At) V on the C-grid (e.g.,
Fig. 1 in LR96), the 1-D finite-volume flux-form transport operator F' in the A-direction is

1 At At
Flu' , At,7) = ————— U = T AN AL 372
(w?, AL, 7) AAMXcost O {/t dt} AAMXcost O [x(w?, At (3:372)

where x , the time-accumulated (from ¢ to t+A¢) mass flu