Model-Proxy Comparison of Precipitation and Hydrogen Stable Isotopes in mid-Holocene Northern Africa with iCESM

Alexander Thompson1, Clay Tabor2, Chris Poulsen1

1Department of Earth and Environmental Sciences, University of Michigan
2Center for Integrative Geosciences, University of Connecticut

CESM Workshop
Boulder, CO
June 18, 2019
African Humid Periods

- Most recent wet phase: African Humid Period (~14.8 to 5.5 ka BP)\(^1\)
- Expanded vegetation cover\(^2\)
- Increased rainfall\(^3\)

Photo credit: Wikipedia – Saharan Rock Art

Adapted from Wright (2017)
Hydrogen Isotopic Composition from Leaf Waxes (δD_{wax})

- δD_{wax} from marine and lake sediment cores preserves $^2\text{H}/^1\text{H}$ ratio1

- In northern Africa, 6ka – 0ka depletion in δD_{wax} has been used as evidence for a “Green Sahara”2

Credit: Wikipedia – Plant cuticle
Leaf wax proxy records:

1. Tierney et al. (2017) -15
2. Tierney et al. (2017) -14
3. Tierney et al. (2017) -20
4. Tierney et al. (2017) -16
5. Niedermeyer et al. (2010) -15
7. Collins et al. (2017) -18
8. Costa et al. (2014) -5
9. Tierney et al. (2017)/Tierney et al. (2013) -10/-12
Amount Effect Interpretation

• “Amount Effect”: increases in rainfall rate are accompanied by depletions in isotopic composition of rainfall

• Interpretation for Green Sahara:
 • Depleted δD_{wax} = Increased rainfall
 • δD_{wax} directly interpreted as δD_p and mean annual rainfall

Adapted from Tierney et al. (2017). ScienceAdvances.
Several studies (e.g., Risi, 2008; Konecky et al., 2019) suggest that the relationship between isotopic composition and rainfall in the tropics is more complicated than the simple “Amount Effect”
Research Questions

• Does the “Amount Effect” accurately depict the relationship between stable isotopes and tropical rainfall in northern Africa during the mid-Holocene in iCESM?

• Can the “Amount Effect” be used to interpret mid-Holocene depletions of leaf wax isotopes as increases in northern African rainfall?
iCESM: water isotope-enabled CESM

- Simulates water isotopes, such as δD
- Fully coupled climate model simulations (atmosphere, ocean, land, etc.)
 - 300 year spin-up
 - 1.9° x 2.5° resolution

Overview of simulations

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Orbital</th>
<th>Sahara Land Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>0ka</td>
<td>Desert</td>
</tr>
<tr>
<td>MH</td>
<td>6ka</td>
<td>Vegetated</td>
</tr>
</tbody>
</table>

- For a vegetated Sahara land surface, the average of land surface variables over the Sahel (10°N zonal region) was calculated and extended north across Africa and the Arabian Peninsula.
Overview of simulations

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Orbital</th>
<th>Sahara Land Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>0ka</td>
<td>Desert</td>
</tr>
<tr>
<td>MH</td>
<td>6ka</td>
<td>Vegetated</td>
</tr>
</tbody>
</table>

- **MH – PI**
 - Combined effect of orbital and vegetational change
 - Most realistic change
Change in mean annual rainfall

- Proxies appear to match rainfall interpretation

*Stippling indicates 95% confidence interval differences

*Stippling indicates 95% confidence interval differences
Change in δD_p

- Depleted towards the east \rightarrow continental effect

Stippling indicates 95% confidence interval differences
Change in δD_p

- Depleted towards the east \rightarrow continental effect *Wind patterns
Change in δD_p

- Enriched in the west

Stippling indicates 95% confidence interval differences
Why is ΔD_p enriched in West Africa in MH?

- Likely due to a stronger Saharan Heat Low

Adapted from Lacour et al. (2017)
Mismatch between changes in rainfall and δD_p

- Amount Effect does not explain 6ka – 0ka change in West Africa

*Stippling indicates 95% confidence interval differences
Mismatch between changes in rainfall and δD_p

- Proxies 1-5 do not signify δD_p based on model results
How to interpret leaf wax isotopic signal?

• Leaf waxes derive their water from the soil\(^1\)

• Could leaf waxes be demonstrating a soil water isotopic, rather than a precipitation isotope, signal?

1. Sachse et al. (2012)
Soil water increases mainly due to expansion of vegetation

*Stippling indicates 95% confidence interval differences
δD_S leads to better agreement with Proxies 1-5
δD_S leads to better agreement with Proxies 1-5

- Proxies 1-9 generally agree with the 6ka – 0ka trend of δD_S

![Map showing δD_S and δp RMSE values](image)

Stippling indicates 95% confidence interval differences
Why is δD depleted during the mid-Holocene relative to the Preindustrial?

- Isotopic differences between desert vs. vegetated environments
- Evapotranspiration flux dominated by bare ground evaporation or canopy transpiration

Adapted from Wright (2017)
Difference in soil water isotopes during mid-Holocene relative to Preindustrial

Fractionating

Sunlight

\[
\begin{array}{cccc}
\text{Evaporation} & 1^\text{H} \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{Enriched soil water} & ^2\text{H} & 1^\text{H} \\
\end{array}
\]

a) Desert

Preindustrial
Difference in soil water isotopes during mid-Holocene relative to Preindustrial

Non-fractionating

Sunlight

Transpiration

^2H

^1H

Depleted soil water

^1H

^1H

b) Vegetated mid-Holocene
Soil water δD signal shows MH-PI difference

- Combination of...
 - Precipitation δD
 - Modification from the land surface

Stippling indicates 95% confidence interval differences
Conclusions

• Re-evaluation of the “Amount Effect”
 • Does not explain mid-Holocene precipitation change in West Africa

• Leaf wax isotopes likely record a signal of soil water rather than precipitation amount

• Northern African leaf wax isotopes contain evidence of expanded vegetation during the mid-Holocene
Thank you!

Questions? Email me at alexjt@umich.edu
Change in δD_p

- Depleted towards the east \rightarrow continental effect

*Monsoon season rain enhancement
Change in δD_p

- Enriched in the west

*Monsoon season rain enhancement
Why is δD_p enriched in West Africa in MH_{veg}?

- Hypothesis: strengthened Saharan Heat Low
Why is δD_p enriched in West Africa in M_{veg}?

- Water vapor δD in mid-troposphere is enriched during summer
- Low-level easterly flow brings enriched Harmattan vapor

Adapted from Lacour et al. (2017)
Strengthened Saharan Heat Low
Seasonal cycle of water vapor δD

West Africa becomes enriched

East Africa becomes depleted

Thompson, CESM Workshop 2019
Seasonal cycle of soil water and isotopes

- Increases in soil water during mid-Holocene are highest during monsoon season
- Soil water δD signal is a combination of precipitation δD and modification from the land surface
Wong et al. (2017) show that precipitation does not infiltrate as deep into the soil as observations suggest

- Surface soil moisture and isotopes show this an even stronger depletion in West Africa soil moisture isotopes, so this should not impact our conclusions
How well does iCESM simulate present-day African isotopes?

Adapted from Lacour et al. (2017)
How well does iCESM simulate present-day African isotopes?

Fig. 3. Reconstructed precipitation-weighted mean-annual δD_p for Africa, based on the interpolated dataset of Bowen and Revenaugh (2003). Sediment cores are numbered (1–9). Major African rivers are marked: Senegal (Se); Niger (Ni); Sanaga (Sa); Nyong (Ny); Ntem (Nt); Congo (Co); Balombo (Ba); Cunene (Cu) and Orange (Or). Hatching marks the approximate source area of each core (Cores 1–4 are joined for clarity; see Table 2 for individual source areas). It should be noted that African GNIP stations are relatively sparsely distributed and therefore the interpolated dataset of Bowen and Revenaugh (2003) may not capture all regional isotopic variability in precipitation.

Adapted from Collins et al. (2013)
How well does iCESM simulate present-day African isotopes?

Fig. 3. Reconstructed precipitation-weighted mean-annual δD_p for Africa, based on the interpolated dataset of Bowen and Revenaugh (2003). Sediment cores are numbered (1–9). Major African rivers are marked: Senegal (Se); Niger (Ni); Sanaga (Sa); Nyong (Ny); Ntem (Nt); Congo (Co); Balombo (Ba); Cunene (Cu) and Orange (Or). Hatching marks the approximate source area of each core (Cores 1–4 are joined for clarity: see Table 2 for individual source areas). It should be noted that African GNIP stations are relatively sparsely distributed and therefore the interpolated dataset of Bowen and Revenaugh (2003) may not capture all regional isotopic variability in precipitation.

Adapted from Collins et al. (2013)
MH Precipitation and Soil Water Isotopes

MH Annual δD_p

MH Surface soil layer 0.366 m depth

Annual δD_S

Annual δD_S

Surface soil layer

0.366 m depth

Thompson, CESM Workshop 2019
Soil water increases mainly due to expansion of vegetation
Soil water increases mainly due to expansion of vegetation.
Why is Proxy 8, from Lake Tana, more enriched than iCESM would suggest?

- Evaporation?
- Timing or regionality of physical mechanisms?

Stippling indicates 95% confidence interval differences
Model-Proxy Comparison
Model-Proxy Comparison

Rainfall RMSE = 17.02‰

Leaf waxes
Rainfall
Soil water

Isotopic Difference MH-PI (%)

Proxy
Model-Proxy Comparison

Rainfall RMSE = 17.02%
Soil water RMSE = 11.34%

Isotopic Difference MH-PI (%) vs. Proxy

Leaf waxes
Rainfall
Soil water