Land and extremes

David Lawrence
Climate and Global Dynamics Laboratory
With contributions from Wim Thiery, Sonia Seneviratne, and Keith Oleson

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.
Impacts of extremes on humans and ecosystems

- **Water**
 - Drought
 - Flood
- **Ecosystem functioning (carbon)**
 - Vegetation mortality due to fire, drought, windthrow
 - Permafrost
- **Agriculture**
 - Heat extremes at flowering
 - Drought and flood
 - Livestock health
- **Urban**
 - Heat and mortality
 - Impacts of hurricanes

France / Natural disaster declared after storms rip through crops
CTSM/CESM increasingly applicable for research into impacts of extremes

- Urban
- Logging
- Fire
- Irrigation
- Crops
- Ecosystems (FATES)
- Reservoirs (soon)
Extremes impacts

- Water
 - Drought
 - Flood
- Ecosystem functioning (carbon)
 - Vegetation mortality due to fire, drought, windthrow
 - Permafrost
- Agriculture
 - Heat extremes at flowering
 - Drought and flood
 - Livestock health
- Urban
 - Heat and mortality
 - Impacts of hurricanes

Impact of land processes on extremes

- Soil moisture / vegetation feedback
 - Amplify temperature extremes
 - Amplify drought, flood, storms
- Direct human influence
 - Land-use and land-cover
 - Irrigation
 - Urban properties
Temporal variability
2°C warming will not be uniform across the year

Mediterranean warming, warmest day of the year (°C)

(Seneviratne et al., 2016 Nature)
Projected soil moisture change
RCP8.5 | 10cm depth | 2070-2099 vs. 1971-2000

(Hauser, Thiery & Seneviratne, 2019 ESD)
GLACE-CMIP5 MIP

(Seneviratne et al., 2014, GRL)
Soil moisture-temperature feedbacks strongly affect the occurrence of hot extremes

LS3MIP will repeat with more models and with ‘bias-corrected’ soil moisture from land-only runs

(Vogel et al., 2017 GRL)
1.5°C target can (potentially) be achieved through several Socioeconomic Pathways each with own LULCC pathway, which exerts differing impacts on extremes.

Hirsch et al., 2018

Emphasis on LULCC impacts on extremes in LUMIP (simulations with alternative land use scenarios)

Joint assessment of quality of simulated LULCC response with alternative land use scenarios

Hirsch et al., 2018
Impacts of irrigation on extremes
Present-day irrigation extent

(b) Area equipped for irrigation - 2000

Grid cell fraction equipped for irrigation [%]

(Adapted from Siebert et al., 2005 HESS)
T_{2m}

TXx
(hottest day of the year)

[°K]

(Thiery et al., 2017 JGR)
Change in LR

Hot extremes become more likely

Hot extremes become less likely

\[
LR = \frac{P_{\text{new}}}{P_{\text{ref}}} = \frac{0.5}{0.1} = 5
\]

(Thiery et al., in rev.)
Urban amplification of extremes
Present-day (PD) & Mid-century (MC) High Heat Stress Days and Nights

NWS Heat Index (HI)

(f) Phoenix

(h) Houston

Oleson et al. 2013, Climatic Change
Influence of urban building properties on extremes

Scenario: Light Weight Insulated Walls and Roofs (LtWt)

• All walls replaced by lightweight (low heat capacity) wall made of wood frames with cement particle board exteriors, extensive layers of insulation and dry wall interior walls.
• All roofs are made of EPDM, roof felt, 6 layers of insulation and two layers of interior drywall.
LtWt: Changes in Min Annual Temperature

T-min change

Less stored heat released at night reduces temp

Feddema et al. 2019, in prep
Extremes impacts

- Water
 - Drought
 - Flood
- Ecosystem functioning (carbon)
 - Vegetation mortality due to fire, drought, windthrow
 - Permafrost
- Agriculture
 - Heat extremes at flowering
 - Drought and flood
 - Livestock health
- Urban
 - Heat index and human health
 - Impacts of hurricanes

Impact of land processes on extremes

- Soil moisture / vegetation feedback
 - Amplify temperature extremes
 - Amplify drought, flood, storms
- Direct human influence
 - Land-use and land-cover
 - Irrigation
 - Urban properties

Many potential extremes topics at intersection between land processes influence on extremes and impacts research
~5 % of all land

~3 % of all land

(Thiery et al., in rev.)
Projections of irrigated area

(b) Cropland area

(d) Irrigated cropland area

(Scenarios: SSP1-26, SSP2-45, SSP3-70, SSP4-34, SSP4-60, SSP5-85)

(Lawrence et al., 2016 GMD)
Frequencies of high-mortality heat waves

Estimated frequencies of high-mortality heat waves under future scenarios summed across 82 study communities for 2061—2080. Each dot represents the projected number of high-mortality heat waves for one ensemble member under a given combination of climate and adaptation scenarios. All projections use the SSP3 population scenario. The gray reference line shows the approximate current frequency of high-mortality heat waves.

Anderson et al. 2015
Early 20th Century

Big Box: \(\Delta T_{tot} = \beta_0 + \beta_1 \times \delta f_{irr} + \beta_2 \times \text{lat} + \beta_3 \times \text{lon} + \beta_4 \times \text{elev} \)

Center pixel: \(\Delta T_{irr} = \beta_1 \times \delta f_{irr} \)

Present-day

\(T + \Delta T_{GHG} \)

(Adapted from Kumar et al., 2013 JGR; Lejeune et al., 2018 Nature CC)
20th C change in daytime temperature during hottest month (CRU)

(Thiery et al., in rev.)