Precursors to Understanding Coexistence with CLM-FATES in California

Polly Buotte, Lara Kueppers, Charlie Koven, Junyan Ding
The CA FATES Project

Understand how past and future climatic conditions may affect wildland vulnerability to drought and fire

Alex Hall, Mike Goulden, Yufang Jin, Charlie Koven, Lara Kueppers, Max Moritz, Jim Randerson, Katherine Reich, Chonggang Xu, Polly Buotte, Junyan Ding, Sam Levis, Jackie Shuman, Lu Zhai, and others across UC campuses
Goals of the CA FATES Project

Goal 1: Understand 2011–2015 drought impacts on ecosystems and fire through observations

Goal 2: Simulate the 2011–2015 drought and its effects on fire and tree mortality

Goal 3: Quantify the role of anthropogenic warming in the 2011–2015 drought

Goal 4: Simulate future drought and fire effects on vegetation productivity, mortality, and distribution
Vegetation Modeling with FATES: the Functionally Assembled Terrestrial Ecosystem Simulator

Important differences from big-leaf CLM:

• Environment and competition determine biogeography, so...

• Biogeography can change through time
1. Define PFT parameterizations

1. Benchmark against site-level observations

1. Replicate fundamental niche resulting from climate and soils for each PFT

1. Replicate realized niche resulting from competition, i.e. observed biogeography
1. Growth characteristics
 - Vcmax
 - leaf longevity
 - evergreen/deciduous
 - needle leaf/broad leaf
 - specific leaf area

2. Drought stress tolerance
 - soil moisture that stomata close
 - stem p50 (FATES-Hydro)

2. Allometry
 - tissue allocation

3. Fire resistance
 - bark thickness
 - resprouting (to be added)
Benchmarking Fluxes at a Tower Site

Initialized, Static Stand Structure

GPP

- Legend:
 - Tower
 - FATES

ET

- Legend:
 - Tower
 - FATES
Iterative Process of Defining PFTs

- **Fundamental niche**
 - If fundamental niche is not correct, revisit definitions

- **Realized niche**
 - If not achieving coexistence, revisit PFT definitions and re-run fundamental niche **
 - competition (multiple PFTs)

- **PFT definitions**
 - empirical data
 - parameter sensitivity test results
 - species categorization

May need to prescribe fire/disturbance
Southern Sierra Study Area

- 4 tower sites
- 4km x 4km resolution
 - climate forcing from Abatzolgou & Brown 2012
- Started with 2 PFTs:
 - pine & oak
- Single-PFT Run
 (fundamental niche)
- Multiple-PFT Run
 (realized niche)

Adapted from Klos et al., 2018
Current Strategies for Improvement:
1. Soil depth
2. Rooting depth
3. Cold stress mortality
Coexistence: Realized Niches

Started from Bare Ground

- Soil depth
- Rooting depth
- Cold stress mortality
- Physiology parameters
FATES Model Development Opportunities for CA Ecosystems

Subsurface water storage and root access

Crown fire and complex terrain

Klos et al., 2018

Beetle Outbreaks

Post-disturbance recovery:
• seedling germination and survival
• resprouting
Project Decisions

Time and Resources

- Rigorous Sensitivity Testing
- Model Development
- Benchmarking

Benefits of Community Development

- Specialized expertise
- Regular communication
- Division of labor
Initial Science Questions

• What are the relative effects of physiology, allometry, and stand structure on GPP and transpiration?

• How might forest type and structure affect flux responses to drought?

• What was the contribution of anthropogenic climate change to the area/magnitude of tree mortality in the recent drought?