Effect of Large-Scale Condensation Fraction on Uncertainty in Modeled Projections of Rainfall

Benjamin A. Stephens
(paper with Charles S. Jackson and Benjamin M. Wagman, in review)

2019 CESM Workshop
Atmosphere Model Working Group Meeting
Main idea: precip partitioning important for thinking about rainfall changes with GW

1. Models partition rainfall differently →
2. f_{LS} correlates strongly with spatial rainfall response patterns, tropical circulation & energy fluxes
3. Relationships vary depending on model (CAM3/CAM5 show opposite behavior)
Spatial response with fLS

• At right, CAM3 rainfall response anomalies (i.e. global warming minus control, minus average response)
• Pattern inverts over Pacific
• Local responses flip (e.g. India)
• CAM5 very similar; CMIP5 less apparent (smaller sample size, greater scatter between models, dynamic oceans)
Quantifying/confirming relationships with f_{LS}

“ΔR” for CAM3
(high-f_{LS} bin minus
low-f_{LS} bin)

$\alpha(A) = A \cdot \Delta R'$
(Anomaly maps A dotted into normalized ΔR)
Control rainfall patterns in CAM3 and CAM5

CAM3

CAM5

Convective rain

Large-scale rain

(Shading represents one standard deviation for that bin)
CAM3 “Short-circuit mechanism”

Low f_{LS} model

High f_{LS} model

VQ

VQ
Conclusions

• f_{LS} is strongly correlated to important aspects of modeled circulation and precipitation, particularly the response to global warming.

• The correlations are complex, depending on model details.

• Observationally, we don’t have a strong basis for knowing the equivalent of f_{LS}.
Thank you for listening to my dad!

“Seth Stephens”
(collaborative project with Sarah Stephens, 2019)