Southern Ocean heat uptake, redistribution and storage in a warming climate: The role of meridional overturning circulation

Wei Liu, Jian Lu, Shang-Ping Xie, Alexey Fedorov

UCR, PNNL, SIO/UCSD, YALE

June 19, 2018, CESM workshop
Not collocated peaks of OHU and OHS \rightarrow Heat advection (by the MOC)
Passive tracer by climatological MOC? MOC changes (shading in panel f)

Scientific Question:
Can we separate and qualify the contributions of wind effect (via changing MOC) & direct CO₂ effect (w/o wind changes) to SO heat uptake and storage?
Partial coupling approach

Natural coupling

ATM
OCN

Overriding

ATM overriding
OCN

Wind effect + Drift!
Partial coupling approach II

Overriding

Experiment 1
ATM overriding
OCN

-3 -2 -1 0 1 2 3

Drift (not depend on background states)

Experiment 2
ATM overriding
OCN

-3 -2 -1 0 1 2 3

Wind effect + Drift

Wind effect = Experiment 2 – Experiment 1
Total response (4xCO$_2$-Ctrl)

Wind Stress (MOC)

Wind Speed (turbulent HF) [very small!]

Direct CO$_2$ effect (w/o wind stress & speed changes)

![Graph showing total, wind stress, and direct CO$_2$ effects over depth and latitude.](image-url)
Zonally integrated full-depth Ocean Heat Budget

- Total
- Wstr
- Wspd
- dirCO₂
- Sum
Conclusion

• The overriding technique enable us to decompose the total ocean response to CO\textsubscript{2} increase into two major components: due to wind changes and due to direct \textit{CO}\textsubscript{2} effect.

• The poleward-intensified winds shift and strengthen the Deacon Cell and hence the residual \textit{MOC}, contributing \textasciitilde20\% to the total OHS maximum.

• The direct CO\textsubscript{2} effect very slightly alters the residual MOC but primarily warms the ocean, contributing \textasciitilde80\% to the OHS maximum.

Reference