Spectra related to the El Nino Southern Oscillation

CESM workshop, June 20, 2018

Judith Berner

National Center for Atmospheric Research
Spectra of 1PC of tropical SSTs, CESM2.0
Spectra of 1PC of tropical SSTs, CESM2.0
We would like to use a statistical model to get uncertainty from an single 100-year run.

Hypothesis: Observed spectra of interannual variability lie within the uncertainty of those produced by a LIM (Newmann et al 2008)
Spectrum of tropical PC₁, OBS

- Fit LIM to monthly means of observed SSTs in tropical band
- Generate 500 samples for 100 years each from the LIM
- **Light shading**: shows max/min power from all samples
- **Dark shading**: standard deviation
For most frequencies the OBS spectrum lies within one standard deviation of the LIM spectra. Nowhere does the observed spectrum lie outside the max/min values of the LIM.

The observed spectrum is not inconsistent with the LIM hypothesis.
Experiments/Data

Experiments:
- Large Ensemble CESM1.1 (LENS), 1850CNTL
- CESM2.0, 1850CNTL

ECMWF reanalysis of 20th-century (ERA-20C) = OBS
- 1900-2010 => 111 years

All results based on 100 year subsets

Caveat: ENSO in experiments with different forcing are compared to each other
Fit a LIM to the LENS 1850CNTL (1800 years)

The LENS spectrum is not inconsistent with the LIM hypothesis.
Uncertainty in LIM and LENS

- Left: Uncertainty given by 18 100yr-simulation from LENS
- Right: Uncertainty given as 500 100yr-simualations from LENS
Define ENSO band as spectrum between 3 and 7 years.

Histogram of power spectral density within ENSO band

LIM captures uncertainty of power spectra in ENSO band
Is the LENS consistent with observations?

- OBS within light blue shading:
 - We cannot reject the hypothesis that the power spectra density of OBS are within the uncertainty of LENS.

- Histogram of power spectral density of LIMs of OBS and LENS do not agree within ENSO band
 - LENS is unlikely consistent with OBS.
Is the LENS consistent with observations?

- Area under spectrum = Variance
- Variance has to be consistent
 - Variances of PC1 are unlikely consistent, but not impossible
Is CESM2.0 consistent with observations?

- CESM2.0 outside uncertainty obtained from OBS LIM
- Variance outside variance from OBS LIM
 - CESM2.0 is unlikely consistent with OBS
- CESM2.0 outside uncertainty obtained from LENS
 - CESM2.0 is not consistent with LENS
On the dynamical mechanisms governing ENSO regularity

SPPT reduces
- overly regular oscillation
- reduced amplitude of spectral peak

Berner et al. 2018
Damped harmonic oscillator forced by white noise

\[\dot{\vec{x}} = L\vec{x} + S \vec{\varepsilon} \]

with

\[L = \begin{pmatrix} -\nu & \omega \\ -\omega & -\nu \end{pmatrix} \]

Perturbing the frequency \(\omega \) results in decreased memory and no change in variance.

Perturbing the damping rate \(\nu \) results in increased memory and increased variance.

\[\vec{x} \] State vector
\[\vec{\varepsilon} \] White noise
\[L \] Feedback matrix
\[S \] Noise amplitude matrix
\[\omega \] Frequency
\[\nu \] Damping rate

Autocovariance, damped oscillator

- \(\tau_d = 21.0, C_0 = 10.5 \)
- \(\tau_d = 35.0, C_0 = 17.5 \)
- \(\tau_d = 15.0, C_0 = 10.5 \)
Thank you!

Berner, Sardeshmukh and Christensen, 2018:” Role of perturbed frequency and damping for El Nino Southern Oscillation irregularity, J.Clim,s 2018
Wiener–Khinchin theorem:
The autocorrelation function of a wide-sense-stationary random process has a spectral decomposition given by the power spectrum of that process.
Assume the evolution of a system can be described as:

\[\dot{x} = Lx + S\tilde{\epsilon} \]

Then, the lagged covariance matrix is given by:

\[C_\tau = e^{LT}C_0 \]

The fluctuation-dissipation relation (stationary Fokker-Planck equation)

\[LC_0 + C_0L^T + Q = 0 \]

\[Q = SS^T \]

Penland and Sardeshmukh, 1995