Land Surface Initialization
Impact on Forecasts and Current Methods

Ahmed Tawfik
National Center for Atmospheric Research
Terrestrial Sciences Section

CESM Workshop 2017
Predictability Contained in Components

Adapted from Dirmeyer
Predictability Contained in Components

Predictability

~10 days

~2 months

Decadal

Atmosphere

Adapted from Dirmeyer
Predictability Contained in Components

\[\text{Atmosphere} \]

\[\text{Ocean} \]

\[\approx 10 \text{ days} \]

\[\approx 2 \text{ months} \]

Adapted from Dirmeyer
Predictability Contained in Components

- Atmosphere
- Land
- Ocean

~10 days
~2 months
Decadal

Adapted from Dirmeyer
Predictability Contained in Components

Atmosphere

Land

Ocean

Adapted from Dirmeyer
Land Surface effects on Forecasts

24-h forecast valid 0000 UTC May 25 2002

(Holt et al 2006, MWR)
24-h forecast valid 0000 UTC May 25 2002
Land Surface effects on Forecasts

24-h forecast valid 0000 UTC May 25 2002

(Holt et al 2006, MWR)
Land Surface effects on Forecasts

24-h forecast valid 0000 UTC May 25 2002

(Holt et al 2006, MWR)
Land Surface effects on Forecasts

24-h forecast valid 0000 UTC May 25 2002

(Holt et al 2006, MWR)
Predictability Contained in Components

Atmosphere

Land

Ocean

Predictability

~10 days

~2 months

Decadal

Adapted from Dirmeyer
Land Surface Effects on Seasonal: GLACE-2

Maximum Harvestable Predictability in Models (Ensemble)

16-30 days

46-60 days

Predictability (r^2_{ideal} with land ICs minus r^2_{ideal} w/o land ICs)

(Koster et al 2011, JHM)
Land Surface Effects on Seasonal: GLACE-2

Maximum Harvestable Predictability in Models (Ensemble)

16-30 days

46-60 days

Predictability (r_{ideal}^2 with land ICs minus r_{ideal}^2 w/o land ICs)

(Koster et al 2011, JHM)
Land Surface Effects on Seasonal: GLACE-2

Maximum Harvestable Predictability in Models (Ensemble)

16-30 days
- Precip.
- Air Temp.

46-60 days
- Precip.
- Air Temp.

Predictability (r_{ideal}^2 with land ICs minus r_{ideal}^2 w/o land ICs)

(Koster et al 2011, JHM)
Describe CLM spin-up
Describe CLM spin-up

Start “Cold”
Constant Moisture and Temperature

Land Surface Model
Describe CLM spin-up

Start “Cold”
Constant Moisture and Temperature

Spin-up
Loop over until state variables equilibrate

Land Surface Model
Describe CLM spin-up

Spin-up

Loop over until state variables equilibrate

Observed Atmosphere

- Temp
- Humidity
- Pressure
- Precip
- Radiation

Land Surface Model

Start “Cold”

Constant Moisture and Temperature

Describe CLM spin-up

Spin-up
Loop over until state variables equilibrate

Observed Atmosphere
Temp Humidity Pressure Precip Radiation

Land Surface Model

Discrepancy in Soil Moisture [%]

Soil Moisture
Spin up Cycle

Describe CLM spin-up

Spin-up

Loop over until state variables equilibrate

Observed Atmosphere

Temperature Humidity Pressure Precipitation Radiation

Now run coupled to the Atmosphere

Atmospheric Model

Land Surface Model

Describe CLM spin-up

Spin-up

Loop over until state variables equilibrate

Observed Atmosphere

- Temp
- Humidity
- Pressure
- Precip
- Radiation

Now run coupled to the Atmosphere

Atmospheric Model

Land Surface Model

NOTE: This procedure is similar when doing short-term forecasting
Available Operational Products

Global Land Data Assimilation System (GLDAS)

GLDAS_NOAH10_M.2.0 Soil moisture content (40 - 100 cm)
Available Soil Moisture Products for assimilation?
Available Soil Moisture Products for assimilation?

In-situ observations of soil moisture

North American SM Database (Quiring et al. 2017, BAMS)
Available Soil Moisture Products for assimilation?

In-situ observations of soil moisture

Remotely Sensed: SMOS, SMAP, etc...

North American SM Database (Quiring et al. 2017, BAMS)

SMAP global soil moisture
Available Phenological Products for assimilation?

Variables such as: NDVI, LAI, greeness, etc...

Can we assimilate this type of information without breaking the model?

Notaro et al. 2017 used daily observed LAI in CLM