Antarctic and Southern Ocean surface temperatures in CMIP5 models in the context of the surface energy budget

David P. Schneider
Climate Analysis Section
National Center for Atmospheric Research
with David Reusch, New Mexico Tech.
CMIP5 Surface Temperature mean & bias

(a) Multi Model Mean Surface Temperature

(b) Multi Model Mean Bias

IPCC AR5, WG1 Chapter 9, 2014
CMIP5 cloud forcing biases

(a) Shortwave cloud radiative effect - MOD-OBS

(b) Longwave cloud radiative effect - MOD-OBS

(c) Net cloud radiative effect - MOD-OBS

(d) Zonal average of shortwave CRE

(e) Zonal average of longwave CRE

(f) Zonal average of net CRE

IPCC AR5, WG1 Chapter 9, 2014
Why study Antarctic & Southern ocean SAT & radiation biases?

Southern Ocean:
- most extensive region of positive surface temperature biases in CMIP5 ensemble mean
- problems with sea ice simulations
- global implication of biases
 - double ITCZ problem (Hwang and Frierson, 2013)
 - ocean heat transport (e.g. Trenberth and Fasullo, 2010)

Antarctic ice sheet:
- very little is known about model biases in the surface climate
- coupled ice sheet models – what biases in the atmospheric forcing?
- global implications of biases
 - (sea level rise; heat sink)
This Study

⇒ 26 CMIP5 models; Historical Run, late 20C (1981-2000)

⇒ Observations: CERES-EBAF, ERA-Interim, MERRA, Matsuura & Wilmott (UDEL) surface temperatures

⇒ 2 domains: Southern Ocean (40°S-60°S); Antarctica (60°S-90°S)

1. ACCESS 1-0
2. ACCESS 1-3
3. BCC-CSM 1.1
4. BNU-ESM
5. CanESM2
6. CCSM4
7. CESM1-CAM5
8. CESM1-CAM5-FV2
9. CNRM-CM5
10. CSIRO-MK3.0
11. GFDL-CM3
12. GFDL-ESM2G
13. GFDL-ESM2M
14. GISS-E2-H
15. GISS-E2-R
16. HAD-CM3
17. HadGEM2-ES
18. INMCM4
19. IPSL-CM5A-LR
20. IPSL-CM5A-MR
21. IPSL-CM5B-LR
22. MIROC5
23. MIROC-ESM
24. MPI-ESM-LR
25. MRI-CGCM3
26. NorESM1-M
Ensemble mean, monthly mean surface air temperature (SAT) and insolation
Ensemble mean bias, inter-model range, and inter-model spread in SAT

Bias

Range (max-min)

Spread

- ensemble-mean bias
- inter-model range
- January model spread vs. spread in each month
Surface energy fluxes

\[\text{SEF}_{\text{net}} = R_{\text{net}} + \text{HF}_{\text{net}} \]

\[\text{SEF}_{\text{net}} = \text{SW}_{\text{net}} + \text{LW}_{\text{net}} + \text{HF}_{\text{net}} \]

\[\text{SEF}_{\text{net}} = (\text{SW}_d - \text{SW}_u) + (\text{LW}_d - \text{LW}_u) + (\text{SHF}_{\text{net}} + \text{LHF}_{\text{net}}). \]

Ensemble mean
Surface energy fluxes

\[\text{SEF}_{\text{net}} = R_{\text{net}} + \text{HF}_{\text{net}} \]

\[\text{SEF}_{\text{net}} = \text{SW}_{\text{net}} + \text{LW}_{\text{net}} + \text{HF}_{\text{net}} \]

\[\text{SEF}_{\text{net}} = (\text{SW}_d - \text{SW}_u) + (\text{LW}_d - \text{LW}_u) + (\text{SHF}_{\text{net}} + \text{LHF}_{\text{net}}). \]
surface albedo (DJF, clear-sky)
Inter-model spread (DJF)

- Temperature
- ASR (Air-Surface Radiation)
- Surface Albedo
- SWCF (Solar Weighted Cloud Fraction)
Inter-model spread (DJF): \(\text{SEF}_{\text{net}} = (\text{SW}_{\text{net}} + \text{LW}_{\text{net}}) + \text{HF}_{\text{net}} \)
Inter-model spread (JJA):

\[SEF_{net} = (SW_{net} + LW_{net}) + HF_{net} \]
R_{net} (JJA)
Longwave cloud radiative effect at surface (JJA): $\text{CRE}_{\text{LW}} = (\text{LW}_d^{\text{all-sky}} - \text{LW}_d^{\text{clear-sky}})^*$

e.g. Stephens et al., 2012, J. Climate
Inter-model spread (ANN): $\text{SEF}_{\text{net}} = R_{\text{net}} + \text{HF}_{\text{net}}$
Ensemble mean (ANN): \(\text{SEF}_{\text{net}} = R_{\text{net}} + H F_{\text{net}} \)

- a) CERES-EBAF: \(R_{\text{net}} \) (W M\(^{-2}\))
- b) EM: \(R_{\text{net}} \) (W M\(^{-2}\))
- c) EM: \(H F_{\text{net}} \) (W M\(^{-2}\))
- d) EM: \(\text{SEF}_{\text{net}} \) (W M\(^{-2}\))

Marshall and Speer, 2012
Summary

1. In summer: Warm bias over Southern Ocean in majority of models and ensemble mean
 - lags biases in SW_{net} and SWCF in late spring thru mid summer
 - SWCF explains model spread in SAT, ASR, R_{net}, etc. and model spread in SAT persists throughout year
 - however, annual R_{net} bias on ocean is negative in ensemble mean

2. In winter: Strong negative R_{net} and LW_{net} bias on the Antarctic ice sheet in all models (!)
 - largely accounted for by LW_d
 - suggests lower atmosphere too stable (strong inversion)
 - associated with longwave CRE
 - compensated by large sensible heat flux
 - leads to annual R_{net} negative bias on ice sheet

3. Models exhibit a relatively wide range of surface albedo on the ice sheet
 - regulates amount of shortwave radiation absorbed and contributes to model spread in SAT
 - some models have uniform albedo and some have complex spatial structure

4. Several biases are difficult to quantify
 - SAT bias on the Antarctic Ice Sheet? Reanalyses are very problematic for addressing this.
 - heat fluxes on both the ocean and ice sheet
 * turbulent heat fluxes (sensible + latent) are probably too large in most models on the ice sheet
 * ensemble mean net annual air-surface heat flux (radiation + sensible + latent) pattern looks reasonable over ocean but too uniform over land