Uncertainty Quantification in the Community Land Model

K. Sargsyan¹, C. Safta¹, B. Debusschere¹, H. Najm¹, D. Ricciuto², P. Thornton²

¹Sandia National Laboratories
Livermore, CA

²Oak Ridge National Laboratory
Oak Ridge, TN

CESM Annual Workshop
Breckenridge, CO
June 18-21, 2012
Outline

1. Introduction
2. Bayesian Inference
3. PC Surrogate
4. Sparse surrogate & sensitivity analysis
5. Calibration plans
The Case for Uncertainty Quantification

UQ is needed in:

- Assessment of confidence in computational predictions
- Validation of physical models
- Design optimization
- Use of computational predictions for decision-support
- Assimilation of observational data and model construction
- Multiscale and multiphysics model coupling
Overview of UQ Methods

Estimation of model/parametric uncertainty
- Expert opinion, data collection
- Regression analysis, fitting, parameter estimation
- Bayesian inference of uncertain models/parameters

Forward propagation of uncertainty in models
- Local sensitivity analysis (SA) and error propagation
- Fuzzy logic; Evidence theory — interval math
- Probabilistic framework — Global SA / stochastic UQ
 - Random sampling, statistical methods
 - Galerkin methods
 - Polynomial Chaos (PC) — intrusive/non-intrusive
 - Collocation, interpolants, regression, fitting ... PC/other
- Random sampling, statistical methods
- Galerkin methods
Plan for CLM UQ

Single-site computations
- Establish set of relevant uncertain inputs
- Estimate uncertainties in inputs/parameters
 - Build an efficient surrogate model
 - Forward UQ + Global sensitivity analysis
- Calibrate CLM/submodels with available data (Bayes)
- Estimate uncertainties in model output quantities of interest

Multiple-site/global computations
- Dimensionality reduction in multi-sites and their inputs
- Calibrate multi-site models
- Forward UQ
Bayes formula for Parameter Inference

Data Model

\[y = f(\lambda) + \epsilon \]

Bayes Formula:

\[p(\lambda|y) = \frac{p(y|\lambda) p(\lambda)}{p(y)} \]

- Prior: knowledge of \(\lambda \) prior to data
- Likelihood: forward model and measurement noise
- Posterior: combines information from prior and data
- Evidence: normalizing constant for present context
Exploring the Posterior in a Computational Setting

- Given any sample λ, the un-normalized posterior probability can be easily computed

$$p(\lambda|y) \propto p(y|\lambda)p(\lambda)$$

- Explore posterior w/ Markov Chain Monte Carlo (MCMC)
 - Metropolis-Hastings algorithm:
 - Random walk with proposal PDF & rejection rules
 - Computationally intensive, $\mathcal{O}(10^5)$ samples
 - Each sample: evaluation of the forward model
 - Surrogate models

- Evaluate moments/marginals from the MCMC statistics
Surrogate Models for Bayesian Inference

- Need an inexpensive response surface for
 - Observables of interest y
 - as functions of parameters of interest x

- Gaussian Process (GP) surrogate
 - GP goes through all data points with probability 1.0
 - Uncertainty between the points

- Fit a convenient polynomial to $y = f(x)$
 - over the range of uncertainty in x

- Employ a number of samples (x_i, y_i)
- Fit with interpolants, regression, ... global/local
- With uncertain x:
 - Construct Polynomial Chaos response surface

Marzouk et al. 2007; Marzouk & Najm, 2009
Polynomial Chaos (PC) Surrogate in high-D

n-dim, p-th order Polynomial

\[u = f(\eta) = \sum_{k=0}^{K-1} c_k \Psi_k(\eta) \quad \eta \in \mathbb{R}^n; \]

High \((n, p) \Rightarrow K \gg 1\) terms

\(N\) samples \((\eta_i, u_i)\) to fit surface

Projection:
- MC/QMC; Sparse Quadrature

Regression:
- Require regularization when \(N < K\)
- Compressive sensing: Least-squares L1-regularization
- Bayesian Compressive Sensing (BCS) \((\text{Ji} \ 2008; \ Babacan \ 2010)\)
- Iterative BCS (iBCS) – adaptive sparsity \((\text{Sargsyan} \ 2012)\)
Construction of CLM sparse PC surrogate

- $n \approx 80$ uncertain input parameters – specified ranges
 - Special handling of algebraic constraints
 - Random parameter samples on 80d hypercube
 - Use iBCS to construct sparse PC surrogate

- Challenge with smooth global surrogate
 - Large regions of given input space result in failed vegetation
 - TotVegC response has discontinuous derivative

![Graphs showing data and polynomial fit for input parameter #1]
Clustered Global CLM Surrogate

- Cluster training samples $\mathcal{D} = \{\mathcal{D}_1, \mathcal{D}_2\}$
 - $\mathcal{D}_1 = \{\eta | \text{TotVegC} < \epsilon\}$
- Construct global surrogate based on each data subset
- Clustered surrogate

$$f_s(\eta) = \begin{cases} f_1(\eta) & \text{for } \eta \in \mathcal{D}_1 \\ f_2(\eta) & \text{for } \eta \in \mathcal{D}_2 \end{cases}$$

- Classification step to discover cluster membership for η
 - \Rightarrow Random Decision Forests classifier (Ho, 1995; Breiman, 2001)
 - collection of decision trees
 - result is mode of the results from individual trees
 - Software: www.alglib.net/dataanalysis/decisionforest.php
CLM Runs – Spinup

- Single-site runs on Jaguar @ ORNL
- Initialization: 3-stage 1000 yr spinup
Given spun-up state:

- 10K random parameter samples on 80-d hypercube
- 1000-yr runs. Each run ~ 10 hr on 1-CPU
Sobol Sensitivity Indices – clustered iBCS surrogate

- Indices measure relative fractional contribution to total variance due to different terms in $f_s(\eta)$
- A measure of global importance over the uncertainty range
- Main effects: $\Psi(\eta_i)$ terms; 2-way coupling: $\Psi(\eta_i, \eta_j)$
- ~ 1000 out of $2M$ terms retained in 4^{th}-order surface

Leaf Area Index

Total Vegetation Carbon
Global Sensitivity Analysis for TotVegC

- Dominant main and 2-way coupled effects
- Significant coupling terms
Calibration Effort – in progress

- Examining noise structure in dynamical observables
- Use multiple observables
- Both steady and unsteady observables
- Begin with a minimal set of important parameters
 - Identifiability
This work was supported by:

- US Dept of Energy (DOE), Office of Science, Biological and Environmental Research (BER)

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000.