Preconditioning Techniques Based on Domain Decomposition Methods

Duk-Soon Oh

Courant Institute of Mathematical Sciences
New York University

June 21, 2012

Joint work with David Holland(NYU), Kate Evans(ORNL), Andy Salinger(SNL), Irina Kalashnikova(SNL), and Steve Price(LANL)
Domain decomposition methods:
the process of subdividing the solution of a large system into smaller subproblems whose solutions can be used to produce a preconditioner for the system of equations that results from discretizing the PDE on the entire domain.
Idea of Domain Decomposition Methods

- Decompose the domain Ω into overlapping or non-overlapping subdomains.
- Assign one or several subdomains to each processor of parallel machine.

In each iteration:
- In each subdomain, solve small local subproblems.
- In addition, solve one small global problem.
Motivation

Conventional methods

- we usually need additional information, e.g., coarse coordinate information.
- we need quite regular meshes.
- it is hard to apply for irregular subdomains.
Alternative Approach

Generalized Dryja, Smith, Widlund (GDSW) coarse space technique

- this technique is based on energy minimizing discrete harmonic extensions.
- it has been applied to many applications
 - almost incompressible elasticity (Dohrmann, Widlund)
 - Reissner-Mindlin plates (Lee)
 - Raviart-Thomas vector fields (Oh)
Alternative Approach

Advantage

- the method can be implemented in an algebraic manner - we do not need any coarse discretization.
- it works well for irregular subdomains and unstructured meshes.
- it has well-established theoretical results, e.g., upper bounds of condition number.
A vector $u^{(i)} := [u^{(i)}_I u^{(i)}_\Gamma]^T$ is said to be discrete harmonic on Ω_i if
\[A^{(i)}_I u^{(i)}_I + A^{(i)}_{i\Gamma} u^{(i)}_\Gamma = 0. \]

$u^{(i)}$ is completely defined by $u^{(i)}_\Gamma$.

The discrete harmonic extension has the minimal energy property.

\[a(u, u) = \min_{v|\Gamma=u_\Gamma} a(v, v) \]
Coarse Component

Interface(Γ) : Vertex + Edge
Coarse Component

- R_0: restriction to coarse space
 - We choose one coarse edge or vertex and give 1 to the nodes on the edge or vertex.
 - We assign 0 to other nodes on the interface.
 - We use the discrete harmonic extension for interior parts.

- $A_0 = R_0 A R_0^T$

We note that this coarse component can be implemented in an algebraic manner. We do not need any coarse discretizations.
Additive Schwarz Preconditioner

Additive Schwarz Method for SPD systems

\[P^{-1} = R_0^T A_0^{-1} R_0 + \sum_{i=1}^{N} R_i^T A_i^{-1} R_i \]

- \(A_0 \): coarse matrix (restriction to the coarse space)
- \(A_i \): local matrix (restriction to overlapping subdomain \(\Omega_i' \))
- \(R_0 \): restriction to coarse space
- \(R_i \): restriction to overlapping subdomain \(\Omega_i' \)
Restricted Additive Schwarz Perconditioner

Restricted Additive Schwarz Method for indefinite or nonsymmetric systems

\[P^{-1} = R_0^T A_0^{-1} R_0 + \sum_{i=1}^{N} \tilde{R}_i^T A_i^{-1} R_i \]

- \(A_0 \): coarse matrix (restriction to the coarse space)
- \(A_i \): local matrix (restriction to extended subdomain \(\Omega_i' \))
- \(R_0 \): restriction to coarse space
- \(R_i \): restriction to overlapping subdomain \(\Omega_i' \)
- \(\tilde{R}_i \): restriction to subdomain \(\Omega_i \)
Numerical Experiments

5km Greenland Ice-Sheet
1 subdomain per each processor, preconditioned GMRES
local solver : Amesos KLU
coarse solver : Amesos KLU

Table: iteration counts

<table>
<thead>
<tr>
<th># of processors</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ifpack ILU</td>
<td>227</td>
<td>269</td>
<td>310</td>
<td>307</td>
</tr>
<tr>
<td>DD</td>
<td>17</td>
<td>20</td>
<td>21</td>
<td>29</td>
</tr>
</tbody>
</table>