Speleothems of South American and Asian Monsoons Influenced by a Green Sahara

Clay Tabor1, Bette Otto-Bliesner2, Zhengyu Liu3

1University of Connecticut
2National Center for Atmospheric Research
3Ohio State University
Mid-Holocene (6 ka)

- Warmer than preindustrial
- More NH summer insolation than preindustrial
- Green Sahara

Experiment Design

- iCESM1.2 (Brady et al., 2019)
- 3 simulations
 - Preindustrial control (PI)
 - 6-ka GHGs and orbital ($\text{MH}_{\text{DESERT}}$)
 - 6-ka + “Green Sahara” (MH_{VEGE})
δ¹⁸O of precip responses

• Isotopic response with 6-ka GHGs (MH\textsubscript{DESERT}) and orbit produces little change in monsoon regions

• Addition of a Green Sahara (MH\textsubscript{VEGE}) amplifies the signals, in better agreement with speleothem records
Model-Proxy comparison

• Improved comparison at almost every location
• Both δ18O and annual temperature work to improve comparison
Austral Summer Precipitation

- A Green Sahara shifts the Atlantic ITCZ northward
- Less efficient precipitation in Brazil drives $\delta^{18}O$ enrichment with a Green Sahara
Boreal Summer Precipitation

- 6-ka orbit leads to more NH summer insolation, which drives the ITCZ north
- Intensified Asian monsoon sources more distant moisture, driving $\delta^{18}O$ depletion
Thank you!

• If you have questions, please contact me.
• clay.tabor@uconn.edu
Annual Temperature

• Lower GHG concentration at 6-ka results in cooling
 • Helps explain model-proxy disagreement

• Inclusion of a Green Sahara results in warming
 • Helps explain model-proxy disagreement