Detecting Arctic sea ice melt onset with a satellite simulator

Abigail Smith⁵, Alexandra Jahn¹, Clara Burgard²

1. University of Colorado Boulder
2. Helmholtz-Zentrum Geesthacht

Supported by NASA FINESST (80NSSC19K1324), the National Science Foundation Graduate Research Fellowship (DGE 1144083) and NSF-1847398.
Melt onset and other seasonal transition dates can be used to evaluate how well climate models represent sea ice

- CMIP6 models show realistic but varying melt onset dates

- Model differences in melt onset are unlikely due to internal variability alone

 We can use these differences to investigate other modeled sea ice characteristics

- However, comparisons between climate models and satellite observations are indirect

Smith, et al., 2020, *The Cryosphere Discussions*
Using a satellite simulator, we can compare melt onset dates between climate models and satellite observations more directly.

Modeled
- Global earth system models (MPI-ESM and CESM2)
- Standard model sea ice melt onset dates
 (Derived here from surface temperature)

Observed
- Observed brightness temperatures
- Satellite-derived sea ice melt onset products

Current method of comparison

SSM/I, SMMR, AMSR-E
Using a satellite simulator, we can compare melt onset dates between climate models and satellite observations more directly.

Modeled
- ARC30 satellite simulator\(^1,2\) → Simulated brightness temperatures → Simulated sea ice melt onset dates → Standard model sea ice melt onset dates → New comparison

Observed
- Global earth system models (MPI-ESM and CESM2) → Satellite-derived sea ice melt onset products
- SSM/I, SMMR, AMSR-E

New comparison
- Observed brightness temperatures

Current method of comparison
- Simulated sea ice melt onset dates (Derived here from surface temperature)

\(^1\)Burgard et al, 2019a, *The Cryosphere Discussions*
\(^2\)Burgard et al, 2019b, *The Cryosphere Discussions*
Using a satellite simulator, we can compare melt onset dates between climate models and satellite observations more directly.

Modeled

ARC30 satellite simulator1,2 → Simulated brightness temperatures → Simulated sea ice melt onset dates → Standard model sea ice melt onset dates

Global earth system models (MPI-ESM and CESM2) → (Derived here from surface temperature)

New comparison

Observed

Simulated brightness temperatures → Observed brightness temperatures

SSM/I, SMMR, AMSR-E → Satellite-derived sea ice melt onset products

New comparison

New comparison

New comparison

Current method of comparison

1Burgard et al, 2019a, The Cryosphere Discussions
2Burgard et al, 2019b, The Cryosphere Discussions
Preliminary results: melt onset dates

Average brightness temperatures
June 2003

CESM2
Satellite data

(1) Using TB 6.9 GHz
(b) Using surface temperature

Difference in days (b) – (a)

- ARC30 can produce realistic brightness temperatures for CESM2
- By comparing melt onset date methods, we can quantify the uncertainty introduced by model/satellite definition differences