A Next-Generation Driver for the Simple Cloud Resolving E3SM Atmosphere Model (SCREAM)

A.S. Donahue and P.M. Caldwell
2019 AMWG Winter Meeting
What is SCREAM?

• A Global Cloud-Resolving Model (Δx=~3 km):
 – Explicitly resolves convective events
 – Provides sufficient parallel work for next-gen machines without hitting strong-scaling limit where GPUs don’t help (see figure)
• Written in templated C++:
 – Removes legacy code, enables use of GPUs via Kokkos library, and attracts computer scientists
• Simple:
 – Improves computational efficiency
 – Makes C++ port tractable
What’s in SCREAM?

1. Resolved-scale **fluid dynamics** treated by a non-hydrostatic Spectral Element (SE) approach

- Only the basic weather drivers are included (for now)
What’s in SCREAM?

1. Resolved-scale fluid dynamics treated by a non-hydrostatic Spectral Element (SE) approach

2. Radiation handled by externally-developed, GPU-ready RRTMGP package

• Only the basic weather drivers are included (for now)
What’s in SCREAM?

1. Resolved-scale fluid dynamics treated by a non-hydrostatic Spectral Element (SE) approach

2. Radiation handled by externally-developed, GPU-ready RRTMGP package

3. Turbulence and cloud formation handled by Simplified Higher-Order Closure (SHOC)

• Only the basic weather drivers are included (for now)
What’s in SCREAM?

1. Resolved-scale fluid dynamics treated by a non-hydrostatic Spectral Element (SE) approach

2. Radiation handled by externally-developed, GPU-ready RRTMGP package

3. Turbulence and cloud formation handled by Simplified Higher-Order Closure (SHOC)

4. Microphysical processes handled by Predicted Particle Properties (P3) scheme

- Only the basic weather drivers are included (for now)
What’s in SCREAM?

1. Resolved-scale fluid dynamics treated by a non-hydrostatic Spectral Element (SE) approach

2. Radiation handled by externally-developed, GPU-ready RRTMGP package

3. Turbulence and cloud formation handled by Simplified Higher-Order Closure (SHOC)

4. Microphysical processes handled by Predicted Particle Properties (P3) scheme

5. Process Coupling handled by the SCREAM next generation Atmospheric Driver (SCREAM-AD)

- Only the basic weather drivers are included (for now)
What is the Atmospheric Driver?

- Controls the coupling of atmospheric processes.
- Controls the passage of information between atmospheric processes.
- Controls the import/export of data from the atmosphere to the other model components.
- Interfaces with the input/output routines.
Current E3SM/CAM paradigm

- Actual atmospheric processes are buried beneath multiple layers of abstraction
 - makes changing process order, coupling approach, or adding new parameterizations difficult
 - makes the run sequence confusing

- Different processes require different information, limiting code reuse:
 - Dynamics needs both states and tendencies from physics.
 - Physics receives only the state from dynamics.
 - Only tendencies are passed between parameterizations.
• Uses a generic **atmospheric process class** for both dynamics and physics which is responsible for:
 • The import and export of surface fluxes
 • Interfacing with the set of atmospheric processes

• This simpler paradigm allows for:
 • Straightforward changes to process order
 • Switching between parallel & sequential splitting
 • Easy addition of new parameterizations

• Enables consistent passage of information between processes:
 • Only the model state will be passed in and out of atmospheric processes
Atmospheric Process Class

- Provides consistent infrastructure for all processes
- Each process has init, run, and finalize methods
- Parameterization portability is enabled by using an ‘interface’ layer to convert input/output between AD- and parameterization-specific data structures
Atmospheric Process Class

- Provides consistent infrastructure for all processes
- Each process has init, run, and finalize methods
- Parameterization portability is enabled by using an ‘interface’ layer to convert input/output between AD- and parameterization-specific data structures
How data is passed around currently:

ATM Driver

Physics Buffer (PBUF)

physics_X

Initialization

Run

Finalize

Pre-amble

Main Routine

Post-process

Subroutine 1

Subroutine ...

Physics Buffer
How data is passed around currently

ATM Driver

Physics Buffer (PBUF)

phys_state
phys_tend

pbuf_add
pbuf_get

physics_X

Initialization
Run
Finalize

Pre-amble
Main Routine
Post-process
Subroutine 1
Subroutine ...

phys_state
phys_tend

pbuf_add
pbuf_get
Field Manager (FM)

- Like PBUF, FM will associate variables with pointers to memory.
- FM will handle **all** AD variables, including prognostic state variables.
 - Only the AD layer will be able to change prognostic state variables.
- FM will only be accessible by initialization and parameterization-interface layers.
 - As a result, all input/output to parameterizations must be passed as input and/or output.
- FM will include new tools to:
 - track where variables are used
 - identify where variables are changed
How data will be passed around in SCREAM FM

Field Manager (FM)

ATM Driver

fm_new_field

fm_get_pointer

state

state*

Initialization

Run

Finalize

Parameterization

Interface
How data will be passed around in SCREAM FM

- Simpler paradigm ⇒ easier to see which variables are being used where.
- Parameterization code is insulated from the SCREAM specific-infrastructure for:
 - unit testing
 - portability
Conclusions

• The SCREAM-AD maintains the good properties of CAM/E3SM’s driver logic but simplifies and improves things where possible.

• Our **atmospheric process** class streamlines the interface between the atmosphere model driver and the individual processes.

• A new **field manager class** improves on the current physics buffer structure by
 – simplifying the interface between processes and variables.
 – Insulating parameterization code from model infrastructure, facilitating unit tests and portability.