Reduced precision microphysics parameterizations in CAM

John Dennis, Dan Milroy, Andrew Gettelman
Do all calculations in CAM/CESM need to be performed in double precision?
History/Motivation

• Historically:
 – Climate models: double-precision
 • Small per MPI rank problem size means less cache pressure
 • 4-byte calculations cost same as 8-byte
 • Needed for conservation
 • Simpler
 – Weather models: single-precision
 • Large per MPI rank problem size means significant cache pressure → advantage to reducing size of variables

• Now:
 – Vector instruction sets means that single-precision rate is potentially 2x that of double-precision
What are the implications of the use of single precision in CAM/CESM?
Potential implications of single precision

- Is correctness maintained?
- Does it reduce code execution time?
- Does it negatively impact maintainability?
Approach

• Previous results:
 – WACCM implicit solver [kernel] \(\rightarrow\) 1.97x speedup
 – Solver was trivial to vectorize
 – Virtually no ‘if’ tests in computational kernel

• Want something more challenging!
 – Morrison Gettelman Microphysics version 2
 – Relatively expensive: \(\sim\)5% of total CAM cost
 – Complex code with lots of ‘if’ tests
 – Extensive experience optimizing code base
 – Willing collaborator (KEY)
Optimization approach: vectorize everything

real, intent(in) :: t ! Temperature in Kelvin
real, intent(out) :: es ! SVP in Pa

! uncertain below -70 C
es = 10.**(-7.90298*(tboil/t-1.)+ &
 5.02808*log10(tboil/t)- &
 1.3816e-7*(10.**(11.344*(1.-t/tboil))-1.)+ &
 8.1328e-3*(10.**(-3.49149*(tboil/t-1.))-1.)+ &
 log10(1013.246))*100.

integer, intent(in) :: vlen
real, intent(in) :: t(vlen) ! Temperature in Kelvin
real, intent(out) :: es(vlen) ! SVP in Pa
integer :: i
! uncertain below -70 C
do i=1,vlen
 es(i) = 10.**(-7.90298*(tboil/t(i)-1.)+ &
 5.02808*log10(tboil/t(i))- &
 1.3816e-7*(10.**(11.344*(1.-t(i)/tboil))-1.)+ &
 8.1328e-3*(10.**(-3.49149*(tboil/t(i)-1.))-1.)+ &
 log10(1013.246))*100.
endo
Is correctness maintained?

• Did not pass CESM verification test
 – The changes are statistically distinguishable from natural variability
• Does appear to pass initial evaluation by Andrew.
Does it reduce execution time?

- MG2 calculation only
 - Cheyenne
 - Kernel: R4 → 1.35x speedup versus R8
 - In CAM: R4 → 1.22x speedup versus R8
- Current R8→R4 speedup is equivalent of Broadwell to Skylake speedup.
- Variation across different MPI ranks:
 - 2x speedup on a few execution paths
 - Additional execution paths could be optimized?
- Overall impact on CAM: ~ 0.5%
 - Very large overhead in actually calling MG2 from CAM
 - Other parameterizations in CAM are significantly more expensive (CLUBB)
Extreme vectorization of the CESM2_MG2 kernel

~20x speedup on NEC VE

Performance neutral for Xeon and TX2
Does it negatively reduce maintainability?

• Single point to switch from 8-byte to 4-byte calculations 😊
• Multiple entry points into modified code
 • Certain MG2 utility routines are called outside main subroutine
 • Saturation vapor pressure calculations called from multiple locations in CAM
• Need to include both 4-byte, 8-byte, vector and scalar versions of numerous subroutines 😞
• Constants: Maintain separate 8-byte and 4-byte versions or type conversion of 8-byte constant?
Recommendation for new parameterizations

- Simplified support for reduced precision will be in next version of CESM
- Develop new parameterization that can be switch between single and double precision
 - Focus on 4-byte version
 - Scientific justification for 8-byte
- Think of calculation on groups of points not single model grid-point
Conclusions/Future work

- Use of single-precision does not break correctness
- Achieves speedup comparable to next generation of processor
- Does currently impact code maintainability due to the call structure of CAM
- Should future parameterizations be single-precision?
Questions?
dennis@ucar.edu