Using CESM and CISM to simulate the long-term evolution of climate and the Greenland Ice Sheet during the Last Interglacial (~129,000 to 116,000 yrs ago)

Bette Otto-Bliesner

Marcus Löfverström, Bill Lipscomb, Jeremy Fyke, Shawn Marshall, Ran Feng, Bill Sacks

Photo by Leo Kampenhout
Last Interglacial [129-116 ka] – Some Evidence from Data

Ice cores
- 6 deep ice-coring projects have reached ice layers back to LIG
- **NEEM**: surface elevation estimated 130 ± 300 m below present
- Annual temperatures
 - NEEM: +7 to +11°C
 - GISP2: +4 to +8°C
- **Dye 3**: new analysis suggests basal ice predates LIG

Raynaud et al., 1997; Johnsen et al., 2001; NorthGRIP, 2004; NEEM, 2013; Yau et al., 2016

Marine cores
- ODP sites offshore contain sediment sourced from Greenland
 - **ODP 626**: silt provenance suggests SGrIS present, smaller than in Holocene
 - **ODP 626**: shrub tundra and dense fern vegetation over S. Greenland
- **ODP 918 & 987**: stable ice sheet in E. Greenland for most of past million years

De Vernal et al, 2008; Colville et al., 2011; Hatfield et al., 2016; Bierman et al., 2016

Less sea ice
Northward extension of boreal forests
Past Modeling of Greenland Ice Sheet during the Last Interglacial

Global sea level highstand 6-9 meters

<table>
<thead>
<tr>
<th>Study</th>
<th>SMB method</th>
<th>GIS melting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huybrechts (2002)</td>
<td>Index</td>
<td>5.5</td>
</tr>
<tr>
<td>Tarasov and Peltier (2003)</td>
<td>Index</td>
<td>2.7–4.5</td>
</tr>
<tr>
<td>Lhomme et al. (2005)</td>
<td>Index</td>
<td>3.5–4.5</td>
</tr>
<tr>
<td>Born and Nisancioglu (2012)</td>
<td>GCM snapshots</td>
<td>4.2–5.9</td>
</tr>
<tr>
<td>Otto-Bliesner et al. (2006)</td>
<td>One-way GCM coupling</td>
<td>2.2–3.4</td>
</tr>
<tr>
<td>Stone et al. (2012)</td>
<td>One-way GCM coupling</td>
<td>0.6–3.5</td>
</tr>
<tr>
<td>Robinson et al. (2011)</td>
<td>Energy-moisture coupling</td>
<td>0.4–4.4</td>
</tr>
<tr>
<td>Quiquet et al. (2013)</td>
<td>Index method</td>
<td>0.7–1.5</td>
</tr>
<tr>
<td>Helsen et al. (2013)</td>
<td>Asynch, 2-way coupling reg model</td>
<td>1.2-3.5</td>
</tr>
<tr>
<td>Calov et al. (2015)</td>
<td>Asynch, 2-way coupling reg model</td>
<td>0.6-2.5</td>
</tr>
<tr>
<td>Yau et al. (2017)</td>
<td>Asynch, 2-way coupling reg model</td>
<td>4.1-6.2</td>
</tr>
<tr>
<td>Goezler et al. (2016)</td>
<td>Synch, 2-way coupling global model</td>
<td>1.4</td>
</tr>
</tbody>
</table>
Early Last Interglacial (128 – 124 ka)

- Large boreal summer insolation anomalies (128-124ka) resulting from orbital forcing assume 127ka insolation anomalies representative.
- Stable GHG concentrations similar to late Holocene
- Continental and oceanic configurations almost identical to modern

CESM1.5 (FV1x1) coupled to CISM1 (4km)

1) LIG 127ka orbital forcing [LIG]
 - 2000 CISM yrs, 155 CESM yrs

2) LIG 127ka orbital forcing + (idealized) boreal forests to Arctic Ocean in North America and Eurasia [LIGveg]
 - + 2000 CISM yrs, 80 CESM yrs

Capron et al., QSR, 2017
Evolution of Greenland annual surface temperatures

LIG simulation
(Seasonal insolation anomalies)

LIGveg simulation
(+Boreal forests extended northward)

<table>
<thead>
<tr>
<th>Year</th>
<th>NEEM Ann ΔT</th>
<th>Summit Ann ΔT</th>
<th>Global Mean Ann ΔT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>+4°C</td>
<td>~0°C</td>
<td>0°C</td>
</tr>
<tr>
<td>4000</td>
<td>+12°C</td>
<td>~2°C</td>
<td>0.7°C</td>
</tr>
</tbody>
</table>

Global Mean Ann ΔT: 0°C

Global Mean Ann ΔT: 0.7°C!
Evolution of Greenland ice sheet thickness

1) LIG simulation

- Overall SMB > 0
- Ice sheet area: ~96% modern
- SLE: 0.6 meters
Evolution of Greenland ice sheet thickness

2) LIGveg simulation
- Overall SMB < 0
- Ice sheet area: ~85% modern
- SLE: 1.8 meters

1) LIG simulation
- Overall SMB > 0
- Ice sheet area: ~96% modern
- SLE: 0.6 meters
Evolution of Greenland ice sheet

Sea-level equivalent

LIG: SLR: 0.1 m/kyr

LIGveg: SLR: 0.7 m/kyr

Calving
Summary

- Thickness change at ice cores
 - CampCentury: -450m
 - NEEM: -400m
 - NGRIP: -200m
 - Summit: -40m
 - Renland: +20m
 - Dye 3: -200m
Next steps

- Transient simulation
 - Rerun with final CESM2 configurations and spunup GrIS initial state
 - Refine vegetation map
 - New calving/marine basal melt parameterizations, possibly
Peak Global Mean Sea Level during the Last Interglacial

Last Interglacial

[129 – 116 ka]
Two Exploratory Simulations Last Interglacial (128 – 124 ka)

1) LIG 127ka orbital forcing [LIG]
 - 2000 CISM yrs, 155 CESM yrs

2) LIG 127ka orbital forcing + (idealized) boreal forests to Arctic Ocean [LIGveg]
 - + 2000 CISM yrs, 80 CESM yrs
Surface mass balance - Comparison to RACMO2.3

\[\text{SMB} = \text{Snow} + \text{Rain} - \text{Runoff} - \text{Sublimation} \]

Snow
- PI ctrl ANN
- RACMO2.3 ANN 1970-1989

Runoff
- PI ctrl ANN
- RACMO2.3 ANN 1970-1989

Solid precipitation (snow) [mmWE / yr]

Runoff [mmWE / yr]
CESM (FV1x1) – CISM (4 km) – two-way coupling

Land -> Ice Sheet
- 10 elevation classes + bare land
 - Surface mass balance
 - Surface elevation
 - Surface temperature

Ice Sheet -> Land
- Ice extent
- Ice surface elevation
- SMB mask

Ice Sheet -> Ocean
- Solid and liquid fluxes

Ice Sheet -> Atmosphere (offline)
- Surface topography

Ocean
CLIMATE: Greenland & Arctic sea ice

Seasonal cycle over Greenland

JAS Sea ice thickness
Preindustrial

Surface meltwater

Land: 60-90N, 60-20W