New radar simulator-based precipitation diagnostics for CESM

Jen Kay, University of Colorado (CU)
Tristan L’Ecuyer (UW-Madison), Angie Pendergrass (NCAR)
Helene Chepfer/Rodrigo Guzman (LMD-Paris), and Vineel Yettella (CU)
Evaluation of CESM1 Rain Frequency

Problem: This evaluation is NOT “definition-aware”.

TRMM and GPCP do not detect “light rain” (< 1 mm/day)
(Berg et al. 2010; Behrangi et al. 2014)
How often does it rain?

Let’s look at CloudSat Observations

2006-2015 CloudSat Near-Surface Rain Frequency (%)

Data from Tristan L’Ecuyer (U. Wisconsin)
2C-PRECIP-COLUMN (Haynes et al. 2009)
CONCLUSION: models overestimate rain frequency, but underestimate rain intensity.

This evaluation “scale-aware” but NOT “definition-aware”.

Stephens et al. 2010
Goal: Use CloudSat to make definition-aware and scale-aware precipitation frequency comparisons

But how? And what is new?

1) "Down-scale" using sub-column generator (COSP1.4)
2) Apply satellite forward model (COSP1.4)
3) Apply 2C-PRECIP-COLUMN algorithm (Haynes et al.. 2009)
4) Apply 2C-PRECIP-COLUMN algorithm (Haynes et al.. 2009)
Global Snow

Kay et al. (2018)
What about future near-surface precipitation changes projected by CESM1?
Let’s compare 2010s with 2080s!
CESM1-Projected 21st Century Change: What would CloudSat Observe?

Three CESM1-projected Changes:
1) Snow becoming Rain (esp. in mid-latitude storm tracks)
2) Less Off-Equatorial Rain, More Equatorial Rain (esp. in Pacific)
3) Increase in Sub-tropical Light Rain Frequency

Kay et al. (2018)
Arctic Snow and Rain Maps

CESM1-projected 21st century changes:
1) More Snow in High Arctic and Over Greenland
2) More Rain Except over Greenland and Central Russia
Conclusions – Kay et al.

1) Scale-aware and definition-aware comparisons of near-surface precipitation frequency show CESM1 rains and snows too frequently when compared to CloudSat observations.

2) 21st Century precipitation frequency change shows conversion of snow to rain, narrowing of the tropical overturning circulation, increased light rain in sub-tropics, more snow in high Arctic and over Greenland. **If CESM1 realistic** – all would be detectable by a future CloudSat launched in 2080 😊.

3) Diagnostics implemented in CESM1 (and soon CESM2).
Tropical Rain and Light Rain Maps

CloudSat Near-Surface Rain (dBz > 0)

CloudSat Near-Surface Light Rain (0 > dBZ > -15)

Observed Frequency (%)

CESM1 Frequency (%)

CESM1 21st C Frequency Change (%)

Kay et al. (2018)