Concurrent Ice & Embedded Ice Coupling: A Solution to Address the Numerical Stability of Ice/Ocean Coupling

Robert Hallberg
NOAA/GFDL and Princeton AOS/CICS
Objectives of Climate Model Couplers

• Manage Complexity
 – Separate the climate system into disciplinary components
 – Interchange different component models with minimal changes to other components
Objectives of Climate Model Couplers

• Manage Complexity
 – Separate the climate system into disciplinary components
 – Interchange different component models with minimal changes to other components

• Achieve Social Harmony
 – “Good fences make good neighbors”
Objectives of Climate Model Couplers

• **Manage Complexity**
 – Separate the climate system into disciplinary components
 – Interchange different component models with minimal changes to other components

• **Achieve Social Harmony**
 – “Good fences make good neighbors”

• **Computational Efficiency**
 – Find concurrency - “Many hands make light work”
Seeking Greater Concurrency

Images courtesy R. Benson & V. Balaji
Objectives of Climate Model Couplers

• Manage Complexity
 – Separate the climate system into disciplinary components
 – Interchange different component models with minimal changes to other components

• Achieve Social Harmony
 – “Good fences make good neighbors”

• Computational Efficiency
 – Find concurrency - “Many hands make light work”

• Achieve physically correct behavior of the coupled system dynamics
 – Avoid coupled instabilities
Key Coupler Considerations:

COUPLING TIME-STEPPING STRATEGIES
Sequential Coupling

Q(SST, T_i, T_a), \tau(u_o, u_i, u_a)

SST, u_o

\Delta t_{coupled}

Atmos. Thermo	Atmos. Dynamics
Ice Thermo | Ice Dynamics

Ocean Thermo	Ocean Dynamics

Ocean Thermo | Ocean Dynamics

Time

Slide courtesy A. Adcroft
 Concurrent Coupling

\[Q(SST, T_i, T_a), \tau(u_o, u_i, u_a) \]

\[Q(SST, T_i, T_a), \tau(u_o, u_i, u_a) \]

\[Q(SST, T_i, T_a), \tau(u_o, u_i, u_a) \]

\[SST, u_o \]

\[SST, u_o \]

\[SST, u_o \]
Concurrent Coupling

\[Q(SST, T_i, T_a), \tau(u_o, u_i, u_a) \]

\[SST, u_o \]

\[\text{Ocean Dynamics} \quad \text{Ocean Thermo} \]

\[t^{n-1} \quad t^n \quad \Delta t_{\text{coupled}} \quad t^{n+1} \]

\[\text{Atmos. Thermo} \quad \text{Atmos. Dynamics} \]

\[\text{Ice Thermo} \quad \text{Ice Dynamics} \]
Concurrent Coupling with MOM6

Atmos. Thermo

Ice Thermo

Atmos. Dynamics

Ice Dynamics

Concurrent Coupling with MOM6

Q(SST, T_i, T_a), \tau(u_o, u_i, u_a)

\(S^T \), u_o

Ocean Dynamics

Accumulating ocean thermodynamic & tracer forcing

\(t^{n-1} \)

\(t^n \)

\(\Delta t_{\text{coupled}} \)

\(t^{n+1} \)

Time

Ocean Thermo

\(\tau(u_o, u_i, u_a) \)
A simplified history of sea-ice ocean coupling

- Rigid lid ocean models could not handle divergent flows or mass loss or gain at the surface (1970s).

 Problem – sea-ice grows by taking fresh water from the ocean
 Solution – use a virtual salt flux to get the equivalent brine rejection
 \[F_{Salt} = -SF_{Water} \]

 Advantages – Massless sea ice does not exert pressure on the ocean or participate in dynamics; Sea ice can be treated as a completely independent component.

 Liabilities – Freezing & melting at different S give inconsistent forcing

- Free surface ocean models allowed climate models to return to the “natural boundary condition” (~2000).
 - **Z-coordinate models** still require limits on ice pressure: \(P_{Ice} < O(0.5)g\rho_{Oce}\Delta z_{Sfc} \)
 - Artificial Stommel-Goldsborough circulation results where the pressure-limited ice melts; sea-ice grounding is not permitted.

- **Z*-coordinates & other ocean model developments** allow for increasingly realistic sea-ice models… (Today)
Traditional (GFDL) Approach to Ocean/Ice Coupling

- Sea-ice (SIS or SIS2) is advanced implicitly with the atmosphere, for skin temperatures consistent with atmosphere.
- Ocean (MOM4, MOM5, GOLD or MOM6) is forced by prescribed fluxes from the sea-ice.
- Air-sea fluxes are based on ocean properties from 1 (sequential) or 2 (concurrent) time-steps before they are applied to the ocean.
- Ice displacement is similarly lagged.
- Icebergs are point masses embedded in the sea-ice.
- Ice can displace a limited thickness of ocean; more than \(\sim 2-5 \) m of ice “levitates” to avoid numerical problems.

Ocean model (MOM6), sea-ice (SIS2), icebergs, and GFDL coupler are all being restructured to allow this approach to be revised.

These revisions may provide a template for consideration in CESM.
Evidence of Lagged Stress-Inertial Coupling Instability in Sea-Ice Thickness

Sequentially coupled data-driven ice-ocean model

Hallberg (2014, Clivar Exchanges)
Symptoms of problems with GFDL’s traditional coupling approach

• Numerical instability of high resolution coupled models, especially in Spring when thick sea-ice becomes unlocked from the pack of thin ice.

• Avoiding “surfing” icebergs and marginal sea-ice requires “levitation” of the ice

• “Levitation” in turn introduces undesirable consequences
 – Icebergs and sea-ice can not ground
 – Unlimited growth of sea-ice (to 1000s of m) in certain embayments
 – No dynamic ice-sheet coupling, or else tabular icebergs must be treated differently from ice-shelves

• Short coupling time-step required at higher resolutions
 – E.g., 1200 s for GFDL’s ¼° CM4 with concurrent coupling
1. Lagged stress / inertial oscillation instability

\[
\frac{\partial u}{\partial t} + i u = \frac{c_d U}{H} (u_{Atm} - u^n)
\]

\[
u' = u - u_{Steady}
\]

\[
u'(t^{n+1}) = \left[e^{-if\Delta t} + i \frac{c_d U}{Hf} (1 - e^{-if\Delta t}) \right] u'(t^n) = A u'(t^n)
\]

\[
\|A\|^2 = 1 - 2 \frac{c_d U}{Hf} \sin(f\Delta t) + 2 \left(\frac{c_d U}{Hf} \right)^2 (1 - \cos(f\Delta t))
\]
Explosive Sea-Ice Growth as a Manifestation of a Sea Ice-Ocean Coupling Instability

\[
\left|2H_t - H_{t-\Delta t} - H_{t+\Delta t}\right| / \left(2H_t + H_{t-\Delta t} + H_{t+\Delta t}\right)
\]

\[H = \text{Ocean boundary layer depth from KPP; determined from initial bulk Ri consideration.}\]
Numerical Ice-Ocean Coupling Instabilities

1. **Lagged stress / inertial oscillation instability**

 \[
 \frac{\partial u}{\partial t} + i\mu u = \frac{c_d U}{H} (u_{Atm} - u^n)
 \]

 \[
 u'(t^{n+1}) = \left[e^{-if\Delta t} + i \frac{c_d U}{H f} \left(1 - e^{-if\Delta t}\right) \right] u'(t^n) = A u'(t^n)
 \]

 \[
 \|A\|^2 = 1 - 2 \frac{c_d U}{H f} \sin(f\Delta t) + 2 \left(\frac{c_d U}{H f}\right)^2 (1 - \cos(f\Delta t))
 \]

2. **Thermal forcing instability**

 \[
 \frac{\partial \theta_1}{\partial t} = -\frac{\lambda}{H_1} (\theta_1 - \theta_2)
 \]

 \[
 \frac{\theta_1^{n+1} - \theta_1^n}{\Delta t} = -\frac{\lambda}{H_1} \left(\theta_1^{n+1} - \theta_2^n\right)
 \]

 \[
 \frac{\partial \theta_2}{\partial t} = +\frac{\lambda}{H_2} (\theta_1 - \theta_2)
 \]

 \[
 \frac{\theta_2^{n+1} - \theta_2^n}{\Delta t} = +\frac{\lambda}{H_2} \left(\theta_1^{n+1} - \theta_2^n\right)
 \]

 Eigenvalues:

 \[
 A_1 = \frac{1}{1 + \lambda \Delta t / H_1}
 \]

 \[
 A_2 = 1 - \lambda \Delta t / H_2
 \]

3. **Gravity wave instability**

 - Sea-ice and icebergs participate in barotropic gravity waves
 - Stability analysis analogous to split-explicit ocean time stepping (e.g., Hallberg, 1997)
 - Instability growth rate proportional to the sea-ice external gravity wave CFL ratio based on the *coupling time step*.

 \[
 \sqrt{gH_{Ice} \Delta T} / \Delta x < O(1)
 \]
Ice in a Greenland Fjord (Rink Isbrae)

(Photo Credit: R. Hallberg 2015 pretending to be an observationalist.)
A coupled gravity-wave toy model

2-layer (sea-ice & ocean) linear nonrotating flat-bottom channel flow with no viscosity.

\[\frac{\partial u_1}{\partial t} = -g \frac{\partial \eta_{1/2}}{\partial x} \]
\[= -g \frac{\partial}{\partial x} (h_1 + h_2) \]

\[\frac{\partial u_2}{\partial t} = -g \frac{\rho_1}{\rho_o} \frac{\partial \eta_{1/2}}{\partial x} - g \frac{\rho_o - \rho_1}{\rho_o} \frac{\partial \eta_{3/2}}{\partial x} \]
\[= -(g - g') \frac{\partial}{\partial x} (h_1 + h_2) - g' \frac{\partial h_2}{\partial x} \]
\[= -(g - g') \frac{\partial h_1}{\partial x} - g \frac{\partial h_2}{\partial x} \]

\[\frac{\partial h_1}{\partial t} = -H_1 \frac{\partial u_1}{\partial x} \]
\[\frac{\partial h_2}{\partial t} = -H_2 \frac{\partial u_2}{\partial x} \]
A coupled gravity-wave toy model

Sequential coupling of gravity waves only:
\[
\begin{align*}
\frac{\partial h_1}{\partial t} &= -H_1 \frac{\partial u_1}{\partial x} \\
\frac{\partial u_1}{\partial t} &= -g \frac{\partial h_1}{\partial x} - g \frac{\partial h_2}{\partial x} \\
\frac{\partial h_2}{\partial t} &= -H_2 \frac{\partial u_2}{\partial x} \\
\frac{\partial u_2}{\partial t} &= -g \frac{\partial h_2}{\partial x} - (g - g') \frac{\partial h_1^n}{\partial x}
\end{align*}
\]

Sequential coupling:
Marginally stable if waves are treated analytically in each component.
\[
\omega_1 = \sqrt{gH_1 k} \quad ; \quad \omega_2 = \sqrt{gH_2 k}
\]

Concurrent forward coupling:
Unconditionally unstable, growth rate:
\[
\approx \frac{(g - g')}{g\Delta T} [1 - \cos(\omega_1 \Delta T)][1 - \cos(\omega_2 \Delta T)]
\]

Concurrent (forward) coupling:
Unconditionally unstable, growth rate:
\[
0 \leq \omega_2 \Delta T <\sim 100
\]

Sequential (filtered) coupling:
\[
\begin{align*}
\frac{\partial h_2}{\partial t} &= -H_2 \frac{\partial u_2}{\partial x} \\
\frac{\partial u_2}{\partial t} &= -g \frac{\partial h_2}{\partial x} - (g - g') \frac{\partial h_1^n}{\partial x} \\
\frac{\partial h_1}{\partial t} &= -H_1 \frac{\partial u_1}{\partial x} \\
\frac{\partial u_1}{\partial t} &= -g \frac{\partial h_1}{\partial x} - g \frac{\partial}{\partial x} \left(\frac{1}{\Delta T} \int_0^{\Delta T} h_2 dt \right)
\end{align*}
\]

Sequential filtered coupling:
Unconditionally unstable, growth rate:
\[
\approx \frac{1}{2} \text{ Concurrent growth rate for small } \omega_2 \Delta T
\]
\[
\propto \frac{1}{\omega_2 \Delta T}, \text{ for large } \omega_2 \Delta T
\]

Damping from an ice-pack can locally stabilize the instability.
Impacts of “Levitating” Ice

Getz Ice Shelf
Antarctica

60 m

500 m below ocean surface

Credit: NASA/Dick Ewers
A NEW ICE / OCEAN COUPING STRATEGY
Concurrent Coupling

\[Q(SST, T_i, T_a), \tau(u_o, u_i, u_a) \]

\[\text{SST, } u_o \]

\[\text{Ocean Thermo} \] \hspace{1cm} \text{Ocean Dynamics} \\
\[\text{Ice Thermo} \] \hspace{1cm} \text{Ice Dynamics}
A Subcomponent Decomposition of Sea-ice Processes

• Fast thermal processes (almost immediate)
 – Surface skin temperature calculation
 – Determines atmospheric boundary layer stability

• Slow thermodynamic processes (hours to years)
 – Melting, Freezing
 – Ice salinity changes

• Dynamics and Rheology (minutes to days)
 – Ice-pack stress fields and momentum budget

• Transport and ridging (hours to days)
Concurrent Coupling in more detail

\[Q(SST, T_i, T_a), \tau(u_o, u_i, u_a), p_i \]

SST, \(u_o, \) SSH\(_o\)

Ocean Thermo

Ocean Dynamics

Ice Fast Thermo

Ice Slow Thermo

Ice Dynamics

Atmos. Thermo

Atmos. Dynamics

\[t^{n-1} \quad t^n \quad t^{n+1} \]

\[\Delta t_{coupled} \]

Time
A solution to the ice-ocean coupling issues?

The (SIS2) sea-ice is being embedded in MOM6, while the atmosphere interacts with its own estimate of the sea ice state.

AMIP runs are effectively unchanged!

- Atmosphere calculates air-sea and air-ice fluxes implicitly (as before), but based on an ice-surface state provided by the slow-ice / ocean PEs
- Fast fluxes are conservatively recalculated to update the slow ice state.
 - Fluxes to ice categories are based on ice state and atmospheric boundary layer
 - Fluxes to the ocean are corrected to match the total fluxes found by the atmosphere
- Slow ice thermodynamics are tightly coupled with ocean thermodynamics
- Tight coupling (cycling or embedding) of ice and ocean dynamics
- Sea ice and icebergs dynamically participate in the ocean’s barotropic solver with embedding – no gravity wave instability
- Ice-ocean dynamic and thermodynamic coupling can be implicit on both sides, allowing grounding of icebergs and sea ice – NO LEVITATION!
- Ice shelf and tabular iceberg thermodynamics treated equivalently
- Icebergs can interact with the ocean over their full depth range
- Add ~1 m “mud-layer” to avoid thermal instabilities during wetting & drying
Concurrent/Embedded Ice Coupling

\[Q(SST,T_i,T_a), \tau(u_o,u_i,u_a) \]

\(\Delta t\)

Ocean Dynamics

Atmos. Thermo

Ice Fast Thermo

Ice Slow Thermo

SST, \(u_o\), ice state

Ice Fast Thermo

Ice Slow Thermo

Ocean Thermo

\(t_n^{n-1}\)

\(t_n\)

\(\Delta t_{coupled}\)

\(t_n^{n+1}\)

Time
Conservatively Recalculating Solar Heating

Increasing sea-ice area or albedo ➔ Apply excess reflected shortwave to ocean

Decreasing ice area or albedo ➔ Reduce incident shortwave to ocean
Stable and Quasi-Conservative Thermal Coupling:

\[
\frac{\theta_1^{n+1} - \theta_1^n}{\Delta t} = -\frac{\lambda}{H_1} \left(\theta_1^{n+1} - \tilde{\theta}_2^{n+1} \right) + \frac{\lambda}{H_1} \left(\theta_2^n - \tilde{\theta}_2^n \right)
\]

\[
\frac{\theta_2^{n+1} - \theta_2^n}{\Delta t} = +\frac{\lambda}{H_2} \left(\tilde{\theta}_1^{n+1} - \theta_2^{n+1} \right) - \frac{\lambda}{H_2} \left(\theta_1^n - \tilde{\theta}_1^n \right)
\]

\[
\frac{\lambda}{H_1} \left(\theta_2^n - \tilde{\theta}_2^n \right) \text{ and } \frac{\lambda}{H_2} \left(\theta_1^n - \tilde{\theta}_1^n \right) \text{ Correct for last step’s flux mismatch.}
\]

\[
\tilde{\theta}_1^n = \theta_1^{n-1} \Rightarrow \text{Quartic Eigenvalue Equation} \quad \text{Conditionally stable.}
\]

\[
\tilde{\theta}_1^n \text{ Implicit Estimate } \Rightarrow \text{No (linear) correction terms; Linearly stable.}
\]

- With only a single component, this is simply implicit flux calculation.
- Essentially a linearized variant of the “fast-physics” implicit coupling between the land/ice and atmosphere.
- Atmosphere and ice/ocean could each calculate air-ocean/ice fluxes
- Conservation is lagged, analogous to concurrent coupling
Considerations in Revising Coupling

- To correct coupling problems, seek verisimilitude before palliative approximations.
- Base coupling algorithms on understanding the dynamics of the coupled system.
- Defy disciplinary component boundaries as necessary.
- Respect tradition and social harmony, but not to the point of compromising the dynamics.
- Algorithm changes primarily for computational efficiency need to be carefully analyzed, especially in extreme situations.
Consequences of Embedded / Concurrent Ice Coupling

- Dramatic revisions to sea-ice code structure
 - Separate sea ice model into 4 distinct pieces, while also permitting the sea ice to used as a single component (Done for SIS2, not Icepack?)
 - Revise of sea-ice code for consistency with ocean code to permit embedding ice dynamics in ocean (Done for SIS2 and MOM6)

- Reformulate coupler for new call sequence options
 - Partially complete/underway for GFDL coupler

- Separation of dynamic and thermodynamic interfaces to ocean
 - Also retaining extant interfaces and solutions
 - Partially complete/underway for MOM6

- To embed: incorporate ice dynamics solver into ocean model
 - Dramatic changes to ocean & ice dynamic cores, while preserving the option to generate existing solutions and behavior
 - Open questions about how to actually handle transport interactions
 - Not started yet for MOM6/SIS2/icebergs