AGENT-BASED MODELING OF PAST ANTHROPOGENIC LAND-COVER CHANGE

A case study from Roman North Africa

Nicolas Gauthier
Land Model and Societal Dimensions Working Groups, 2018

Center for Social Dynamics and Complexity
School of Human Evolution and Social Change
Arizona State University

Special thanks to Peter Lawrence and the NCAR Graduate Visitor Program!
BACKGROUND
The province of Africa Proconsularis – roughly modern day Algeria, Tunisia, and Libya – was the **breadbasket** of the Roman Empire.
Was the region’s productivity the result of **climate** or **irrigation**?
Closing the Loop

Land cover prescribed from population-based hindcasts lack feedbacks between humans and climate
North Africa is a region of tight land-atmosphere coupling, and experienced massive land-cover change during the Roman Imperial period.
CLOSING THE LOOP

Need for dynamical feedbacks between human and Earth systems in the past, but we lack the data needed for a fully parameterized IAM.
MULTI-AGENT SIMULATION
Complexity arises when simple agents with heterogeneous information, objectives, and resources interact.
ADDING SOCIAL COMPLEXITY

Need more flexible representations of the complex social dynamics that drive land-use and land-cover change.
Linkages to CLM/CESM
INTEGRATION WITH CLM

Linkages to CLM/CESM

1. Use ESM outputs as model inputs
 - weather
 - maximum potential crop yields
 - vegetation initial conditions at equilibrium with climate
INTEGRATION WITH CLM

Linkages to CLM/CESM

1. Use ESM outputs as model inputs
 - weather
 - maximum potential crop yields
 - vegetation initial conditions at equilibrium with climate

2. Output maps of that can be read into a Land Surface model
 - agriculture and pasture land
 - wood harvest intensity
 - population density
 - land equipped for irrigation
MODELING ROMAN LAND USE
1. Allocate land use via decision making of *boundedly rational households*, rather than deterministic functions of population density or land suitability.
Households allocate labor to:

1. Make **food** by farming (wheat and olive) or herding (sheep and goat)
2. Invest in **infrastructure** by repairing irrigation canals or maintaining social ties
Agents differ in their objectives:

- **Maximizers** - maximize food, subject to labor constraints
- **Satisficers** - minimize labor, subject to food constraints
Spatial distribution of land use is mediated by topography.
1. Allocate land use via decision making of **boundedly rational households**, rather than deterministic functions of population density or land suitability.
CORE DESIGN PRINCIPLES

1. Allocate land use via decision making of **boundedly rational households**, rather than deterministic functions of population density or land suitability.

2. Use a **multilevel modeling** framework to capture both individual-level demography and large-scale migration flows.
Individual level demography constrained by **food production**

![Diagram showing the relationship between age-specific fertility and mortality, population age structure, age-specific labor availability, food calories available, and food ratio.](image)
MULTI-LEVEL MODELING
MULTI-LEVEL MODELING
Flows of people and resources are routed on a network of cities and roads via an entropy maximizing spatial interaction model.
SUMMARY
SUMMARY

- Static land use maps are insufficient to simulate Holocene paleoclimate scenarios such as Roman North Africa
SUMMARY

- Static land use maps are insufficient to simulate Holocene paleoclimate scenarios such as Roman North Africa.
- Agent based models provide a flexible alternative to IAMs where input data are lacking.
• Static land use maps are insufficient to simulate Holocene paleoclimate scenarios such as Roman North Africa
• Agent based models provide a flexible alternative to IAMs where input data are lacking
• Land surface modelers can draw on anthropology and archaeology to better understand past land-use dynamics on multiple scales
ESMs provide **physically consistent** representations of land-atmosphere feedbacks using **scientifically validated** models with well-engineered software components.

ABMs allow for **bottom-up** generation of land-use maps that continuously **contribute** to and **adapt** to environmental variability.