Large-scale adoption of intercropping for securing global food supply and air quality – a model study using CLM 4.5

Ka Ming FUNG (kamingfung@link.cuhk.edu.hk)

Graduate Division of Earth and Atmospheric Sciences
Faculty of Science
The Chinese University of Hong Kong

Advisors: Amos Tai (CUHK), Eri Saikawa (Emory)

CESM LMWG Meeting
February 5th, 2018
Damages done by agricultural emissions are comparable to those caused by industrial sectors.
Rising food production driven by fast population growth could be a bigger threat to air quality.

Farms (Local)

Crop Growth & Grain Yield

NH$_3$

Fertilizer

Wind

Urban Air Quality

Cities (Regional)

+ Acidic Chemicals, e.g., NO$_3^-$, SO$_4^{2-}$

PM$_{2.5}$
Maize-soybean intercropping is capable of generating the same amount of crop production with 30% less fertilizer, and 26% less NH$_3$

Maize is first planted in the field. After a month, soybean is seeded in between maize strips.

Such competition triggers and enhances soybean to fix more atmospheric N to the soil.
Nation-wide adoption of intercropping could bring China both environmental and economic benefits

On average, maize production could be maintained with 42% less fertilizers

NH$_3$ emission could be lowered by 45%

Net profit could increase US$45b (+85%) nationwide, including US$1.5b saved health cost

Downwind PM$_{2.5}$ could be reduced by up to 2.1% (1.5 µg m$^{-3}$)

Fung et al. (in prep.)
Crop growth is highly coupled with climate and the environment.

We are adding “NH$_3$ volatilization” and “intercropping” to CLM4.5.
A missing pathway in the nitrogen cycle of CLM

- Atmospheric N's
- deposition
- Fertilizer N
- fertilization
- Microbes N
- N fixation
 - (soybean only)
- Litter N
- decomposition
- N fixation
- NH_4^+
- immobilization
- NH_3
- volatilization
- Leached NO_3^-
- denitrification
- uptake
- NO_3^-
- leaching
- N_2O
- Food N
- harvesting
- nitrification
- deposition
- senescence
- uptake
- nitrification
- leaching
We borrow the multi-stage NH$_3$ volatilization scheme for CLM from DNDC (Li et al., 2012)

NH_4^+(soil) \rightarrow NH_4^+(non-ads) \rightarrow NH$_3$(aq) \rightarrow NH$_3$(g)

DNDCv9.5 uses an empirical equation for adsorption of NH$_4^+$:

$$f_{ads} = 0.99(7.2733f_{clay}^3 - 11.22f_{clay}^2 + 5.7198f_{clay} + 0.0263)$$

The non-adsorbed [NH$_4^+$] is given by:

$$[NH_4^+_{(non-ads)}] = [NH_4^+_{(soil)}](1 - f_{ads})$$

Equilibrium between [NH$_4^+_{(non-ads)}$] and [NH$_3$(aq)]:

$$K_w = 10^{0.08946 + (0.03605)T_{soil} \times 10^{-15}} \text{ (mol}^2 \text{ L}^{-2})$$

$$K_a = (1.416 + (0.01357)T_{soil}) \times 10^{-5} \text{ (mol L}^{-1})$$

$$[H^+] = 10^{-pH}$$

$$[OH^-] = K_w/[H^+]$$

$$[NH_3(aq)] = [NH_4^+_{(non-ads)}][OH^-]/K_a$$

Volatilization rate of [NH$_3$(aq)] from a soil layer in one time-step is found by:

$$\frac{d[NH_3(g)]}{dt} = [NH_3(aq)] \left(\frac{1.5s}{1 + s} \right) \left(\frac{T_{soil}}{50 + T_{soil}} \right) \left(\frac{q_{max} - q}{q_{max}} \right) \frac{1}{\Delta t}$$

where:

- f_{clay} is the clay fraction
- T_{soil} is soil temperature (°C)
- K_w is the equilibrium constant for the dissociation of water
- K_a is the acid dissociation constant for NH$_4^+$
- $[H^+]$ is the hydronium ion concentration
- $[OH^-]$ is the hydroxide ion concentration
- $[NH_3(aq)]$ is the concentration of ammonia in solution
- $[NH_4^+_{(soil)}]$ is the concentration of ammonium in the soil
- $[NH_4^+_{(non-ads)}]$ is the non-adsorbed ammonium concentration
- f_{ads} is the adsorption fraction
- q_{max} is the maximum emission rate
- q is the actual emission rate
- Δt is the time-step size (s)
- s is the soil layer index
- T_{soil} is the soil temperature (°C)
- V is the wind speed (m s$^{-1}$)
CLM-simulated monthly-averaged NH₃ emission agrees well with MASAGE over most high emission regions.

CLM-simulated NH₃ emissions from crops lands compared with MASAGE agricultural NH₃ emission inventory grid-by-grid

Fung et al. (in prep.)
To allow intercropped crops to compete for nutrients, soil N deployed for plant growth is now transferrable among intercropped soil columns.
A new variable added to quantify belowground crop-crop competition under intercropping

1. Assuming surface area of a crop’s root is proportional to its mass, a crop’s competition factor (CF) is then defined as:

\[
CF_{\text{crop}} = \frac{\text{total root surface area a crop}}{\text{total root surface area of both crops}}
\]

\[
\approx \frac{\text{mass}_{\text{root,crop}} \cdot \text{weighting}_{\text{crop}}}{\sum_{\text{system}} \text{mass}_{\text{root,crop}} \cdot \text{weighting}_{\text{crop}}}
\]

2. The amount of soil N a crop can take up is co-limited by its demand and accessible soil N:

\[
N_{\text{uptake,crop}} = \min \left(N_{\text{demand,crop}}, CF_{\text{crop}} \cdot \sum_{\text{system}} N_{\text{deployed,crop}} \right)
\]

Fung et al. (in prep.)
Assuming all croplands cultivating both maize and soybean are now converted to intercropping (Fung et al. (in prep.))

- **Monoculture maize**
 - Total = 197 Tg
- **Monoculture soybean**
 - Total = 49.7 Tg
- **Intercropped maize**
 - Total = 244 Tg
- **Intercropped soybean**
 - Total = 1.24 Tg
- **Difference in maize**
 - Total = 47 Tg (+23%)
- **Difference in soybean**
 - Total = -48.4 Tg (-97%)
The same amount of fertilizer is applied; NH$_3$ emissions is reduced by >40%

Fung et al. (in prep.)
Our preliminary results show that intercropping can secure global food production and reduce air pollution.

- **Future work:**
 - Revising soybean fixation algorithm
 - Adding spatial variability on fertilizer use
 - Examining other intercropping pairs
 - Adding N_2O & NO_x emissions and NO_3 leaching
 - Coupling NH_3, N_2O & NO_x emissions with CAM
 - Investigating interrelationship between intercropping, the environment, and climate

Thank You!

Please don’t hesitate to contact me at kamingfung@link.cuhk.edu.hk