Paleoclimate and sea-level modeling with CESM2

Bette Otto-Bliesner, Bill Sacks, Bill Lipscomb, Jeremy Fyke, Shawn Marshall, Esther Brady

Marcus Löfverström
NCAR
CESM winter meeting, Boulder, 2018
LGM sea-level change

Pre-industrial

ICE-6G
LGM sea-level change

Pre-industrial

Last glacial maximum

120–130 m sea-level drop

Exposed land

ICE-6G
LGM sea-level change

Pre-industrial

Last glacial maximum

120–130 m sea-level drop

Exposed land

ICE-6G
Traditional approach:
- Ice sheets are static “white mountains” (all PMIP1,2,3 simulations)
- Update topography in discrete steps (e.g. TraCE)

120–130 m sea-level drop

ICE-6G
CESM2 (FV1x1) – CISM2 (4x4 km) two-way coupling

Land -> Ice Sheet
- (10 elev. classes + bare land)
 - Surface mass balance
 - Surface elevation
 - Surface temperature

Ice Sheet
- (Dynamics; 4x4km)

Land surface
- (Ice sheet surface mass balance; FV1)

Atmosphere
- (FV1; ~1°)
 - Ice sheet elevation (offline)

Ocean
- (~1°)
 - Liquid and solid runoff

Ice Sheet -> Land
- Ice extent
- Ice sheet elevation
- SMB mask

Ice Sheet -> Atmosphere
- Ice sheet elevation (offline)

Ice Sheet -> Ocean
Example of new capability — Greenland deglaciation

Ice thickness [m]

Last Interglacial

(year 3000)

Pre-industrial

(year 0)

(b) — (a)

~1.5 m sea-level rise

(High summer insolation)
Example of new capability* — glacial inception

Default CISM2 domain
Example of new capability* — glacial inception

Default CISM2 domain

(416 x 704)
Example of new capability* — glacial inception

Default CISM2 domain

(416 x 704) (2400 x 2080)
Example of new capability* — glacial inception

Initial condition (PI)

Ice thickness year 1000

116 ka forcing protocol

~7.7 m sea-level equivalent

Not supported by default!
Pros and cons of a coupled Earth System/Ice-Sheet model

<table>
<thead>
<tr>
<th>Static ice sheets:</th>
<th>Dynamic ice sheets:</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Forgiving of climate biases (to certain degree)</td>
<td>- Sensitive to climate biases/feedbacks (background and self-induced; Ts, Precip,...)</td>
</tr>
</tbody>
</table>
Pros and cons of a coupled Earth System/Ice-Sheet model

<table>
<thead>
<tr>
<th>Static ice sheets:</th>
<th>Dynamic ice sheets:</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Forgiving of climate biases (to certain degree)</td>
<td>- Sensitive to climate biases/feedbacks (background and self-induced; Ts, Precip,...)</td>
</tr>
<tr>
<td>- Not responding to model climate</td>
<td>+ Responding to model climate</td>
</tr>
<tr>
<td>+ (Sometimes desired)</td>
<td>- State/feedback sensitive (long response time)</td>
</tr>
</tbody>
</table>
Sensitive to climate biases/feedbacks

- Snow accumulation
- Formation of ice sheet in area that likely was ice free (rapid expansion)
- Positive feedback makes “problem” worse over time
Pros and cons of a coupled Earth System/Ice-Sheet model

Static ice sheets:

- **Pros:**
 - Forgiving of climate biases (to certain degree)
 - (Sometimes desired)
 - Only “old” questions can be explored

- **Cons:**
 - Not responding to model climate

Dynamic ice sheets:

- **Cons:**
 - Sensitive to climate biases/feedbacks (background and self-induced; Ts, Precip,...)
 - State/feedback sensitive (long response time)

- **Pros:**
 - Responding to model climate
 - New set of questions can be explored
Pros and cons of a coupled Earth System/Ice-Sheet model

Static ice sheets:

- Forgiveing of climate biases (to certain degree)
- Not responding to model climate
 + (Sometimes desired)
- Only “old” questions can be explored
- Can be unrealistic (e.g. RCP8.5)

Dynamic ice sheets:

- Sensitive to climate biases/feedbacks (background and self-induced; Ts, Precip,…)
- State/feedback sensitive (long response time)
- New set of questions can be explored
- Potentially more realistic (depends on application)
Challenges when moving forward

• Surface mass balance calculated in land model
Challenges when moving forward

- Surface mass balance calculated in land model

Blue: grounded ice
Red: floating ice

SMB in **blue** areas
No SMB in **red** areas
Challenges when moving forward

- Surface mass balance calculated in land model

- Land/ocean masks not dynamic (new mapping/grid files have to be created)
 - Perhaps sufficient to update (say) every 100 years?
 - Infrastructure has to be put in place

![Map showing land exposed by sea-level drop](image)
Challenges when moving forward

- Surface mass balance calculated in land model

- Land/ocean masks not dynamic (new mapping/grid files have to be created)
 - Perhaps sufficient to update (say) every 100 years?
 - Infrastructure has to be put in place

- Ice-sheet-model acceleration to reduce simulation length
 - Current implementation is not conserving water
Challenges when moving forward

- Surface mass balance calculated in land model
- Land/ocean masks not dynamic (new mapping/grid files have to be created)
 - Perhaps sufficient to update (say) every 100 years?
 - Infrastructure has to be put in place
- Ice-sheet-model acceleration to reduce simulation length
 - Current implementation is not conserving water
- Spun-up CESM2-CISM2 (Greenland) initial state
Challenges when moving forward

- Surface mass balance calculated in land model

- Land/ocean masks not dynamic (new mapping/grid files have to be created)
 - Perhaps sufficient to update (say) every 100 years?
 - Infrastructure has to be put in place

- Ice-sheet-model acceleration to reduce simulation length
 - Current implementation is not conserving water

- Spun-up CESM2-CISM2 (Greenland) initial state

- Infrastructure to generate CISM2 grids outside of Greenland
 - My scripts can perhaps be a starting point
Questions