Regional, seasonal and lagged influences of the Amundsen Sea Low on Antarctic Sea Ice

Laura Landrum1, Marika Holland1, and Marilyn Raphael2

1National Center for Atmospheric Research (NCAR), Boulder, CO
2University of California Los Angeles, Los Angeles, CA
Background: Amundsen Sea Low

ASL:

Climatological low pressure region in high latitude South Pacific
(60°-75°S, 170°-290°E)

Significantly correlated with:
Southern Annular Mode (SAM)
(all seasons although not as strongly in austral winter)

Nino3.4 (DJF)

Related to location of maximum cyclone system density in Amundsen-Bellingshausen seas

Tremendous year to year variability

e.g. Fogt et al., JGR, 2012; Hosking et al., J. Clim, 2013

1979-2015 climatology

ERAI (PSL)
SSMI (sea ice)
Background:
ASL and sea ice extent seasonality

ASL metric:
lowest absolute central pressure in ASL region

Tremendous year to year variability (depth and location)
ASL: interannual variability

April (example)

ASL impacts Sea Ice through winds

Largest observed SIC trends in region of ASL influence
Background motivation: ozone, ASL and sea ice

ASL attributed SIC changes, 1955-2005

Observed SIC changes, 1979-2015

DJF ASL deepening over ozone depletion time period (1955-2015)

Deepening summertime ASL does not explain observed MAM sea ice trends

Mechanisms explaining observed fall (MAM) trends in sea ice remain uncertain

e.g. England et al., GRL, 2016; Landrum et al., GRL, 2017
ASL-Sea Ice Concentration

3 examples of ASL influence on SIC

1. April (sea ice advance)
2. July (mid-winter)
3. October (sea ice retreat)
April ASL

Deepening ASL:
↑ SIC in Ross, Amundsen
April (austral fall) ASL

- Deepening ASL → increased SIC in Ross, Amundsen
- Anomaly increases then persists (1 – 3 months)

- Ice advancing
- Ice edge close to ASL lat
- Mean ice motion: meridional (V) > zonal (U)
- ASL impacts primarily meridional ice motion
Deepening ASL:

↓ SIC in Ross (outer), Bellingshausen

↑ SIC in Amundsen

July ASL - July SIC correlation
July (austral winter) ASL

- Deepening ASL → tripole anomaly pattern:
 - decreased SIC in Ross, Bellingshausen
 - increased SIC in Amundsen
- Anomaly grows (1-3 months) and persists (~7 months in Ross-Amundsen)

- Ice nearing maximum
- ASL within ice pack
- Mean ice motion: meridional (V) ~ zonal (U)
- ASL impacts primarily zonal ice motion (U)
October ASL

Mean SLP, ice motion

R: ASL-SLP, ice motion

Deepening ASL: Relatively little lag-0 influence

Oct ASL - Oct SIC correlation
October ASL

2 different processes:
- **Zonal ice motion (outer Ross)** – similar to July

- **Seasonal ice retreat (inner Ross)** opposite to July
 - Ice thinning
 - Earlier melt out
 - Higher solar radiation
 - Warmer ssts
 - *delayed ice advance 5 months later*

(Holland et al., Nature Communications, 2017)
October (austral spring) ASL

- Deepening ASL \rightarrow decreased SIC in Ross, Bellingshausen, increased SIC in Amundsen
- ASL influence on ice motion similar to July
- Oct ice retreating (unlike July)
- Lagged relationships stronger than coincident relationships

- Ice retreating (Ross Sea no longer producing ice)
- ASL within ice pack
- Mean ice motion: meridional (V) \sim zonal (U)
- ASL impacts primarily zonal ice motion (U)
- ASL also increases ice transport out of inner Ross Sea (U and V), thinning the ice pack (initially little impact on sea ice concentration)
Summary

April ASL
Meridional ice motion
Anomaly persists ~3 months

July ASL
Zonal ice motion
Very persistent anomalies (7+ months)

Oct ASL
Zonal ice motion
Thinning of ice in inner Ross sea
Earlier melt out
Highest correlations at 5 months lag
Oct ASL: Mar SIC relationships stronger than Mar ASL: Mar SIC
Summary

“Generally accepted” view deepening ASL (↓ PSL) leads to:

↑ SIC Ross (western flank)
↓ SIC Bellingshausen (eastern flank)

Sometimes right, sometimes wrong

it’s complicated

(ice motion: mean and ASL influence; location of ice edge & ASL, ice retreating vs. advancing)
Extra slides
Ice motion convergence

Regional climatological ice motion convergence

Regional climatological regressed ice convergence
Climatology ASL
(mean and regressed)