AMWG: 2018-02-13

Plans for infrastructure development in CESM-CAM

Michael Duda, Dave Gill (MMM)
Steve Goldhaber, Mariana Vertenstein, Francis Vitt (CGD)
CESM (including CAM) is moving to git

- CESM2 will be released from a GitHub repository
 - git is a distributed version control system, GitHub is a cloud-based git workflow service
 - CIME has been in git (at GitHub) for over two years
 - CLM5 (part of CESM2) was recently released on GitHub
- CAM will move to GitHub after the CESM2 release
Why git? Why GitHub?

• git is becoming the standard for open source collaborative development.
• Distributed version control makes it easier for anyone in the community to keep their developments in version control.
• GitHub provides great collaborative tools for code development and review.
• Integration of code, issues and project management creates greater transparency.
• We will develop new, transparent development procedures for future community CAM development.
• Questions? Want to help? Please contact me.
Requirements for CAM Physics -- after CAM6

• Support for new physics suites (packages) while maintaining ability to run older suites
 – Interoperable development of new unified physics suite
 – Ability to continue to run mainline CAM and WRF physics suites
• Interoperability between NCAR atmosphere models (WRF, MPAS, CAM)
 – For example, run WRF physics inside CAM without any changes to parameterizations or suite definition
• Ability to run chemistry and/or physics on different grid from dynamics
What is wrong with what we have?

- CAM physics parameterizations depend on several CAM-specific data structures (physics_state, physics_tend, surface fields in, surface fields out, PBUF). Other models have very different state data structures.
 - This inhibits portability between models.
- phypkg (tphysbc, tphysac) logic has combined implementation of CAM3, CAM4, CAM5 & CAM6 including several options for CAM5 and CAM6.1
 - Increases difficulty in experimenting with new physics parameterizations and suites.
What is the Community Physics Driver Framework?

- Multi-model effort to build flexible physics-package driver with a common, model-independent interface
- Replaces hardcoded, complex logic with a data-driven schedule of parameterization calls
- Handles data flow to and from host model as well as between parameterization calls
- Recently funded for implementation by CGD (CAM), MMM (WRF & MPAS), ACOM (Chemistry package)
- Goal is to also be compatible with NOAA (NGGPS, CCPP)
CAM6 Physics vs. CPD

CAM6 ⇒ CPD

Steve Goldhaber
Tel: 303.497.1770 | Email: goldy@ucar.edu
CAM6 Physics Parameterization vs. CPD

CAM6 Physics Parameterization

- Gather data from state, previous tendencies, & physics buffer
- Update state, tendencies, physics buffer & diagnostic output

Parameterization portable layer (all I/O through Fortran arrays)
Examples: microphysics, cloud physics, radiation

CPD

Parameterization Cap (Fortran code generated from Parameterization metadata)

Parameterization portable layer (all I/O through Fortran arrays)
Examples: microphysics, cloud physics, radiation

Steve Goldhaber
Tel: 303.497.1770 | Email: goldy@ucar.edu
Summary

• Physics parameterizations and suites can be shared among models without modification.

• The CPD creates a uniform data interface for parameterization inputs and outputs.

• Shared infrastructure lowers coding, testing, and maintenance costs.

• Well-documented interfaces makes it easier for the community to contribute usable parameterizations.
<table>
<thead>
<tr>
<th>var</th>
<th>standard name</th>
<th>description</th>
<th>units</th>
<th>rank</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ncol</td>
<td>horizontal_loop_extent</td>
<td>horizontal loop extent</td>
<td>index</td>
<td>0</td>
<td>integer</td>
</tr>
<tr>
<td>pcols</td>
<td>horizontal_dimension</td>
<td>horizontal dimension</td>
<td>index</td>
<td>0</td>
<td>integer</td>
</tr>
<tr>
<td>pver</td>
<td>vertical_dimension</td>
<td>vertical layer dim</td>
<td>index</td>
<td>0</td>
<td>integer</td>
</tr>
<tr>
<td>ddel</td>
<td>time</td>
<td>physics time step</td>
<td>s</td>
<td>0</td>
<td>real</td>
</tr>
<tr>
<td>pmid</td>
<td>air_pressure</td>
<td>midpoint pressure</td>
<td>Pa</td>
<td>2</td>
<td>real</td>
</tr>
<tr>
<td>u</td>
<td>eastward_wind</td>
<td>zonal wind speed</td>
<td>m s⁻¹</td>
<td>2</td>
<td>real</td>
</tr>
<tr>
<td>v</td>
<td>northward_wind</td>
<td>meridional wind speed</td>
<td>m s⁻¹</td>
<td>2</td>
<td>real</td>
</tr>
<tr>
<td>t</td>
<td>air_temperature</td>
<td>temperature</td>
<td>K</td>
<td>2</td>
<td>real</td>
</tr>
<tr>
<td>du</td>
<td>tendency_of_eastward_wind</td>
<td>zonal wind tendency</td>
<td>m s⁻²</td>
<td>2</td>
<td>real</td>
</tr>
<tr>
<td>dv</td>
<td>tendency_of_northward_wind</td>
<td>meridional wind tend.</td>
<td>m s⁻²</td>
<td>2</td>
<td>real</td>
</tr>
<tr>
<td>ds</td>
<td>tendency_of_air_temperature_due_to_radiative_heating</td>
<td>heating tendency</td>
<td>K s⁻¹</td>
<td>2</td>
<td>real</td>
</tr>
</tbody>
</table>
Parameterization CAP

<table>
<thead>
<tr>
<th>var</th>
<th>standard name</th>
<th>description</th>
<th>kind</th>
<th>intent</th>
<th>opt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ncol</td>
<td>horizontal_loop_extent</td>
<td>horizontal loop extent</td>
<td>in</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>pcols</td>
<td>horizontal_dimension</td>
<td>horizontal dimension</td>
<td>in</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>pver</td>
<td>vertical_dimension</td>
<td>vertical layer dim</td>
<td>in</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>delt</td>
<td>time</td>
<td>physics time step</td>
<td>in</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>pmid</td>
<td>air_pressure</td>
<td>midpoint pressure</td>
<td>kind_phys</td>
<td>in</td>
<td>F</td>
</tr>
<tr>
<td>u</td>
<td>eastward_wind</td>
<td>zonal wind speed</td>
<td>kind_phys</td>
<td>in</td>
<td>F</td>
</tr>
<tr>
<td>v</td>
<td>northward_wind</td>
<td>meridional wind speed</td>
<td>kind_phys</td>
<td>in</td>
<td>F</td>
</tr>
<tr>
<td>t</td>
<td>air_temperature</td>
<td>temperature</td>
<td>kind_phys</td>
<td>in</td>
<td>F</td>
</tr>
<tr>
<td>du</td>
<td>tendency_of_eastward_wind</td>
<td>zonal wind tendency</td>
<td>kind_phys</td>
<td>out</td>
<td>F</td>
</tr>
<tr>
<td>dv</td>
<td>tendency_of_northward_wind</td>
<td>meridional wind tend.</td>
<td>kind_phys</td>
<td>out</td>
<td>F</td>
</tr>
<tr>
<td>ds</td>
<td>tendency_of_air_temperature_due_to_radiative_heating</td>
<td>heating tendency</td>
<td>kind_phys</td>
<td>out</td>
<td>F</td>
</tr>
</tbody>
</table>
Physics Suite

<suite name="Held_Suarez">
 <init>held_suarez_init</init>
 <ipd part="tphysbc">
 <subcycle loop="1">
 <scheme>check_energy_fix</scheme>
 <scheme>physics_update</scheme>
 <scheme>held_suarez_tend</scheme>
 ...
 <scheme>physics_update</scheme>
 </subcycle>
 </ipd>
</suite>
The Pitch

• Both the move to GitHub and conversion to a common physics framework will enhance community engagement with CAM.
• There are decisions to be made along the way and we hope the community will be involved!
• Questions? Want to help? Please contact me.