STOCHASTIC FORCING OF CP AND EP ENSO EVENTS: OBSERVATIONS VS CESM-LE

Erin Thomas1,
Matt Newman2,
Dan Vimont1

Many Thanks to:
Cristian Martinez-Villalobos1,
Mike Alexander2,
Cécile Penland2

1Atmospheric and Oceanic Sciences
University of Wisconsin-Madison

2NOAA ESRL Boulder, CO

CVCWG Meeting
Boulder, CO
March 2, 2017
What is Stochastic Forcing?

- Forcing that is white \textit{in time} (not space)
- Physical systems contain processes on many time scales
 - Approximate the ‘fast’ processes (chaotic & non-linear) as white noise

Why is it important?

- Many physical model experiments show ENSO is sensitive to natural variability
 - Initial conditions
 - Noise forcing

[Graphs and diagrams are included here.]
Role of Noise Forcing in Generating ENSO Diversity

- Observational evidence for *optimal initial conditions* that maximize EP and CP growth

Optimal Initial Conditions, and Final Conditions

- What noise forcing can *lead to the generation* of these optimals?
Methods

1. Estimate Dynamics - Linear Inverse Model (LIM)
2. Identify Optimal Initial Conditions
3. Calculate Noise Forcing

Observations
1982-2015
SST: monthly + daily IOSST
Thermocline depth (20° Isotherm depth): monthly + daily GODAS
Daily NCEP Reanalysis

CESM Large Ensemble
1982-2015
35 Ensemble Members
SST: monthly + daily
SSH: monthly + daily
Daily Atmospheric Variables
Using Linear Inverse Modeling (LIM) to Estimate Noise Forcing

1) Calculate Dynamics,
2) Identify the Optimal Initial Conditions,
3) Estimate Noise Forcing

Final State: CP or EP ENSO event
Using Linear Inverse Modeling (LIM) to Estimate Noise Forcing

1) Calculate Dynamics,
2) Identify the Optimal Initial Conditions,
3) Estimate Noise Forcing
Using Linear Inverse Modeling (LIM) to Estimate Noise Forcing

1) Calculate Dynamics,
2) Identify the Optimal Initial Conditions,
3) Estimate Noise Forcing

Final State: CP or EP ENSO event

- 850mb Zonal Wind (shaded)
- Optimal Initial Condition
- Noise
- Deterministic Dynamics + Noise
- EP Optimal
- SST (shaded)
- Thermocline Depth (contours)
Dynamics: Linear Inverse Model

General linearized model describes the Tropical Pacific:

\[\frac{dX}{dt} = LX + \xi \]

- **White Noise Forcing**
 - (does not include atmospheric noise)

Deterministic Dynamics

\[X = \text{State Vector [SST; Thermocline Depth or SSH]} \]
\[L = \text{Linear Operator describing the slow, linear dynamics of the system} \]
\[\xi = \text{Noise Forcing} \]

Solution:

\[X(\tau) = \exp(L\tau)X(0) \]

Calculate Linear Dynamics \(L \) from **statistics** of observations:

\[C(\tau) = \exp(L\tau)C(0) \]

\[L = \frac{\ln(C_\tau/C_0)}{\tau} \]
Optimal Initial Conditions

\[X(\tau) = \exp(L\tau) \, X(0) = G_\tau \, X(0) \]

Solve generalized eigenvalue problem for **optimal** initial conditions \((p) \) that maximize growth \((\mu) \) in the direction specified by \(\text{Norm} \ (N) \)

\[G_\tau^T N G_\tau \, p = \mu(\tau)p \]

“CP” or “EP Norm” defines direction of growth

Maximized Growth

Optimal Initial Condition
Optimal Initial Conditions

Observations

6mo CP Optimal

6mo EP Optimal

CESM-LE

6mo CP Optimal

6mo EP Optimal

PMM

Thermocline contour interval: 4m

SSH contour interval: 2cm
Final Conditions

Observations

CP Final

EP Final

CESM-LE

CP Final

EP Final

Thermocline contour interval: 8m

SSH contour interval: 4cm
Noise Forcing

\[\frac{dX}{dt} = LX + \xi \]

\[\xi(t) = \frac{[x(t+\Delta t) - x(t-\Delta t)]}{2} - Lx(t) \]

- \(x \) = High Frequency (pentad) State Vector
- \(L \) = Linear Dynamics of the system
- \(\xi(t) \) = Noise Forcing (time and space dependent)

Observations

Regress \(\xi(t) \) onto the spatial patterns of optimal initial conditions
Noise Forcing

Seasonal Cycle of Noise Variance

Observations

CESM-LE
CP Noise: Sea Level Pressure

Observations

DJF

JJA

ANN

CESM-LE

symmetric

NPO

ANN

DJF

JJA
EP Noise: Sea Level Pressure

Observations

CESM-LE

ANN

weaker

ANN
Noise: EP 850mb Zonal Wind

Observations

CESM-LE

WWB

MAM

JJA

WWB in CESM?

MAM

JJA
Noise: EP OLR

Observations

ANN

MAM

JJA

CESM-LE

ANN

MAM

JJA
Final Remarks:

1. **Central Pacific:**
 - Optimal initial condition: **Pacific Meridional Mode**
 - Noise forcing: **North Pacific Oscillation (DJF)**

2. **Eastern Pacific:**
 - Optimal initial condition: SST anomalies in Eastern Pacific, depressed thermocline
 - Kelvin Wave / Thermocline
 - Noise forcing: Zonal Wind anomalies (MAM)
 - WWB

3. Differences in CESM-LE analysis:
 - CP Optimal + final
 - EP Optimal + final
 - EP Noise Variance: peaks in JJA
 - EP Wind Structures: JJA

Thank you!