Threshold behavior in surface response to mid-latitude afforestation

CESM-LMWG Meeting
Marysa Laguë & Abigail Swann
2016.02.09
mlague@uw.edu
Goal:

Explore how amount of trees in mid-latitudes:

- impacts the local energy budget
- modifies cloud cover
- influences global circulation
Goal:

Explore how amount of trees in mid-latitudes:

• impacts the local energy budget
• modifies cloud cover
• influences global circulation

How does the response scale with the amount of trees added?
Plant-atmosphere interactions: location matters
Plant-atmosphere interactions: location matters

Tropics

H₂O dominated
Forests cool
Plant-atmosphere interactions: location matters

Tropics
- H_2O dominated
- Forests *cool*

Boreal
- Albedo dominated
- Forests *warm*
Plant-atmosphere interactions: location matters

Tropics

H₂O dominated
Forests cool

Mid-latitudes

Albedo dominated
Forests warm

Boreal
Plant-atmosphere interactions: location matters

Tropics

H$_2$O dominated
Forests *cool*

Mid-latitudes

H$_2$O or albedo?

Boreal

Albedo dominated
Forests *warm*

H$_2$O

(Bonan 2008)
Plant-atmosphere interactions: location matters

Tropics: \(\text{H}_2\text{O} \) dominated

Mid-latitudes: \(\text{H}_2\text{O} \) or albedo?

Boreal: Albedo dominated

(Albedo dominated: Bonan 2008)
Model experiments:
Increase tree cover from 30°N – 60°N

- CESM 1.3
 - CAM5 atmosphere,
 - CLM 4.5 land (with carbon cycle)
 - CICE4 dynamic sea ice
 - Slab ocean

- 50 year simulations (20 years of spin up)
Model experiments:
Increase tree cover from 30°N – 60°N

5 simulations:
- Present day forest cover
- 4 experiments increasing forest cover by ~3,500,000 km² each (50%, 100% grasslands and 50%, 100% agricultural lands)
Model experiments:
Increase tree cover from 30°N – 60°N

5 simulations:
- Present day forest cover
- 4 experiments increasing forest cover by ~3,500,000 km² each (50%, 100% grasslands and 50%, 100% agricultural lands)
More sun is absorbed over land as tree area increases.
More sun is absorbed over land as tree area increases

Δ Absorbed Shortwave (Land Area, 30°N to 60°N)

More clouds

W/m²

Grass50 Grass100 GrassAgr150 GrassAgr200
More sun is absorbed over land as tree area increases

Δ Absorbed Shortwave (Land Area, 30°N to 60°N)

More clouds

More energy absorbed
(darker surface, less clouds)

Grass50 Grass100 GrassAgr150 GrassAgr200
Outgoing surface energy (land area, 30°N to 60°N)

Δ Latent Heat (H_2O)
More trees = more evapotranspiration

\[\Delta \text{Latent Heat (H}_2\text{O)} \]
More trees = more evapotranspiration
More trees = more evapotranspiration

Δ Latent Heat (H₂O)

<table>
<thead>
<tr>
<th></th>
<th>Grass50</th>
<th>Grass100</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/m²</td>
<td>0.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

The diagram illustrates the increase in latent heat (H₂O) release with more trees. The chart shows a higher value for Grass100 compared to Grass50, indicating a greater evapotranspiration rate with increased tree coverage.
Threshold: increasing tree cover doesn’t increase water fluxes

\[\Delta \text{Latent Heat (H}_2\text{O)} \]

![Graph showing the comparison of latent heat for different grass cover types.]
Threshold: increasing tree cover doesn’t increase water fluxes
Threshold: increasing tree cover doesn’t increase water fluxes (despite absorbing more solar energy)
Threshold: Δ evapotranspiration depends on water availability
Threshold: Δ evapotranspiration depends on water availability

Evapotranspiration Increasing

Δ Latent Heat (H$_2$O)

Water limited experiments
Part of the unaccounted for energy: outgoing longwave radiation
Part of the unaccounted for energy: outgoing longwave radiation

Δ Latent Heat (H₂O), Longwave Radiation, Sensible Heat

Water limited experiments
Part of the unaccounted for energy: sensible heat

Δ Latent Heat (H₂O), Longwave Radiation, Sensible Heat

Water limited experiments
Part of the unaccounted for energy: sensible heat

Δ Latent Heat (H₂O), Longwave Radiation, Sensible Heat

Water limited experiments

Grass50 Grass100 GrassAgr150 GrassAgr200

LH OLR SH

W/m²
Part of the unaccounted for energy: sensible heat

Δ Latent Heat (H₂O), Longwave Radiation, Sensible Heat

More longwave + sensible heat = increased temperatures
Change heat and water fluxes => change relative humidity
Change heat and water fluxes => change relative humidity

When water is limiting, the troposphere dries.
Mid-latitude Response: 2 Regimes

Regime 1: Water available
- Energy goes out as water

Regime 2: Water limited
- Cloud cover decreases, surface warms
Regime 2: two pathways for energy absorption

Cloud response effect

Surface albedo effect

Cloud cover decreases, surface warms

Regime 2: Water limited
Summary

1. Increase mid-latitude forest cover: reach a threshold on water fluxes (latent heating)

2. Before water threshold, increased clouds compensate for darker surface. When water threshold is reached, more trees -> less clouds (troposphere dries)

3. Mid-latitudes absorb more solar energy **not only** because the surface gets darker (albedo effect), but also because cloud cover is reduced (more warming than water)
For a given change in energy transport, we get some shift in rain

Quantify this: what is the ΔITCZ for a given Δ energy transport?
\[\frac{\Delta ITCZ}{\Delta AHT_{eq}} \]

Cam5 8.7°/PW
CMIP3 3.2°/PW
Cam3 2.3°/PW