DEVELOPMENT OF WINTER WHEAT MODEL IN CLM4.5

Yaqiong Lu, NCAR
Lara Kueppers, LBNL
Ian Williams, LBNL
Justin Bagley, LBNL
2/9/2016
Winter wheat yield

Spring wheat yield

WINTER WHEAT SITES

ARM SGP Main site (US-ARM)
- Site measured NDVI and LAI
- Planting date
- Well documented Land management

Single point CLM45 simulations
- CLM45BGCCROP (crop on)
- CLM45SP (crop off)
Three cross validation sites: Flux, LAI, yield

1. Ponca city site, OK, US (US-Pon)
2. Lonzee site, Belgium (BE-Lon)
3. Merzenhausen, Germany
Phase 1: Planting:
- $T_{\text{min}5} < 5^\circ C$
- days $> Sep 1$
- $\text{GDD}_{020} > 50$

Phase 2: Leaf emergence:
- $\text{GDD}_{tsoi} > 3\% \text{GDD}_{\text{mat}} = 51$
- Base temperature is 0$^\circ C$
- Leaf, stem, root carbon increasing

Phase 3: Grain fill:
- $\text{GDD}_{\text{plant}} > 40\% \text{GDD}_{\text{mat}} = 680$
- base temperature is 0$^\circ C$
- Leaf and stem carbon decreasing
- Grain carbon increasing

Phase 4: Harvest:
$\text{GDD}_{\text{plant}} > \text{GDD}_{\text{mat}} = 1700$
VERNALIZATION

winter crops must expose to low, nonfreezing temperatures to enter the reproductive stage.

A generalized vernalization function for winter wheat (Streck et al., 2003)

Vernalization begin after germination end before flowering

Minimum temperature : -1.3 °C
Optimum temperature : 4.9 °C
Maximum temperature : 15.7 °C

\[\text{GDD}_{\text{plant}} = \text{vf} \times \text{GDD}_{\text{plant}} \]

\[\text{agrain} = \text{vf} \times \text{agrain} \]
FROST TOLERANCE AND DAMAGE

LT50

The Lethal temperature at 50% of the individuals are damaged (Bergjord et al., 2008)

Survival rate

representing the likelihood that an individual is damaged by exposure to a certain temperature (Vico et al., 2014)

WDD > 1
Reduce leaf and stem carbon by a factor of mean survival rate

Weighted killing degree days (vico et al., 2014)
Winter wheat growth at ARM site

US-ARM LAI

![Graph showing LAI (leaf area index) over time for US-ARM site with data points for observed and simulated values.]

US-ARM Yield

![Graph showing wheat yield over time for US-ARM site with data points for observed and simulated values.]

- **Yield (bu/ac)**:
 - Observed (orange line)
 - CLM45BGCCROP (green line)

- **Years**: 2003 to 2010
Improved latent heat fluxes compared to prescribed crop

US-ARM Latent heat flux

US-ARM Sensible heat flux

- **obs**
- **CLMSP**
- **CLM45BGCCROP**
Not well represent the winter wheat growth in the three cross validation sites, especially at the two European sites
Very small LAI and yield simulations at BE-Lon site

BE-Lon LAI

![Graph showing LAI (m²/m²) comparison between observations (obs) and CLM45BGCCROP from DOY 1 to 365 with peaks in 2009, 2010, and 2011.]

BE-Lon Yield

![Bar chart showing yield (bu/ac) for CLM 2005, 2007, 2009, and 2011 with observed values.]
Why such poor simulation at the two European sites?
Regional CLM offline simulation in US
ACKNOWLEDGEMENT

Hanna Post, University of Cologne, Germany

Pauline Buysse and Tanguy Manise, Université catholique de Louvain, Belgium

Fadong Li, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences

Jiquan Chen, Ranjeet John, and Housen Chu, Michigan State University