Options for NorESM2 for CMIP6
- with emphasis on the atmosphere

Trond Iversen
Alf Grini, Alf Kirkevåg, Dirk Olivié, Øyvind Seland, Michael Schulz, Jens Debernard (MET Norway)
Jon Egill Kristjansson, Kari Alterskjær, Matthias Hummel, (Univ. Oslo)
Christoph Heinze, Mats Bentsen, Ingo Bethke, Alok Gupta, Mehmet Ilicak, Hanna Lee, Jerry Tjiputra, Thomas Toniazzo (UniRes., Univ. Bergen)
Annica Ekman, Anna Lewinschal, Hamish Struthers (Stockholm Univ.)
Risto Makkonen (Univ. Helsinki)
NorESM belongs to the “family” of models based on the Community ESMs.

• The ocean model → iso-pycnic co-ordinate, developed from MICOM;
• Ocean bio-geochemistry is based on HAMOCC (HAMburg Ocean Carbon Cycle Model);
• Aerosol life-cycling, physics, and interactions with clouds (CAM-Oslo);
• Adjusted processing of sea-ice and snow on sea-ice.
NorESM2_CAM – the CMIP6-versions

• intended to be based on CESM1.5 / CAM5.5 or newer.

• preliminary version is based on CESM1.2_CAM5.3.
 • But: CICE5 and CLM5 are needed in NorESM2

• Alternative:
 • trace-back CAM5.3 / 5.4 from CESM1.5_CAM5.5,
 • e.g. with 48 levels
 • and WACCM stratospheric physics
 (→QBO, SSW possible impacts on tropospheric dynamics)

• A version based on CESM2_CAM6 to be considered later

• The MICOM-based Ocean model can be run with 1x1 deg and 0.25x0.25 deg resolution
Sea ice component in NorESM2

• **The sea ice component based on CICE5**
 – Most likely with prognostic sea-ice salt.
 – Possibly include changes in the horizontal distribution of snow on sea ice, and a simple parameterization of the effects of wind blowing snow.
NorESM-Ocean Resolution

Based on monthly snapshots from early NorESM2 tests where NorESM-O was coupled to standard CAM5.3
Experience from NorESM2 coupled experiments with 1° and 0.25° ocean resolution

1: CAM4, 1° deg Ocean
N1850_f19 tn11_01_default
CAM4/CLM4 2°, MICOM/CICE 1°

2: CAM5-Oslo, 1° deg Ocean
N1850C5OL45_f09 tn11
CAM5-Oslo/CLM4.5 1°, MICOM/CICE 1°

3: CAM5, 1/4° deg Ocean
ATM_F09_MICOM_tnx025
CAM5/CLM4 1°, MICOM/CICE 0.25°

4: CAM5-Oslo, 1/4° deg Ocean
CAM5O1MICOMFINAL2
CAM5-Oslo/CLM4.5 1°, MICOM/CICE 0.25°

Global Mean Ocean pot. temp. difference.

TOA heat balance
Max. AMOC
Increase no. of levels
Inspired by Yaga Richter’s work

Two CAM5.3-OSLO test simulations planned,
• one with 32 layers and standard gravity wave drag parametrisation
• one with 48 levels and WACCM gravity wave drag parametrisation.

1 deg resolution with prescribed SST/sea-ice climatology; 50 years.
Six possible configurations of NorESM2 for CMIP6.

Low, Medium, or High atmospheric and oceanic resolution; Preliminary: 53 ocean & 32 atmos. levels.
Process complexity: Emission-driven GHG and atmospheric Chemistry.

<table>
<thead>
<tr>
<th>NorESM2</th>
<th>_MH</th>
<th>_HH</th>
<th>_MM</th>
<th>_LM</th>
<th>_LME</th>
<th>_LMEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmos. – Land</td>
<td>M: 0.9x1.25 deg.</td>
<td>H: 0.23x0.31 deg.</td>
<td>M: 0.9x1.25 deg.</td>
<td>L: 1.9x2.5 deg.</td>
<td>L: 1.9x2.5 deg.</td>
<td>L: 1.9x2.5 deg.</td>
</tr>
</tbody>
</table>

RESOLUTION

GHG
- Concentration-driven
- Emission-driven

Aerosol
- Emis-driven, Compl physics
- Emis-driven, Simple physics
- Emis-driven, Compl physics
- Emis-driven, Compl physics
- Emis-driven, Compl physics
- Emis-driven, Compl physics

Atmos. Chem.
- Simplified; Simplified; Simplified; Simplified; Simplified; C: Complex

Ocean BioGeoC.
- OFF
- OFF
- OFF
- OFF
- E: ON
- E: ON

CMIP-DECK + CMIP6 Hist
- ALL
- Only AMIP
- OPTIONAL: ALL if _MH fails
- AMIP, PrelInd, Historic
- ALL except AMIP
- Only AMIP

MIPs
- AerChemMIP
- CFMIP
- RFMIP
- DAMIP
- OMIP
- ScenarioMIP
- SIMIP
- HighResMIP
- OPTIONAL. If _MH fails:
 - AerChemMIP
 - CFMIP
 - RFMIP
 - DAMIP
 - OMIP
 - ScenarioMIP
 - SIMIP
- AerChemMIP
- CFMIP
- DAMIP
- DCPP
- LS3MIP
- LUMIP
- OMIP
- PMIP
- RFMIP
- ScenarioMIP
- VolMIP
- SIMIP
- C4MIP
- LUMIP
- LS3MIP
- OMIP
- PMIP
- RFMIP
- ScenarioMIP
- VolMIP
- SIMIP
- AerChemMIP
- VolMIP
Remarks on Status for NorESM2

CMIP DECK:

NorESM2_MH (or _MM) should be ready by end 2016/early 2017
ScenarioMIP, AerChemMIP, DAMIP

NorESM2_LM & LME should be ready before summer 2017.
ScenarioMIP, C4MIP, DAMIP, LUMIP, LS3MIP, AerChemMIP
Important aerosol related updates:
CAM4-Oslo → CAM5-Oslo:

1) “Oslo aerosols” as an option alongside CAM5’s MAMx
2) Explicit treatment of aerosols in cloud-water
3) New sea-salt emission parametrization (Salter et al., 2015)
4) Terrestrial BVOC-emissions from CLM4.5 → SOA
5) Explicit aerosol nucleation of H2SO4 + SOA
6) Online oceanic biogenic POM and DMS emissions
7) Improved heterogeneous ice nucleation treatment
8) Conservation of energy-consistency – fix implemented
9) Several bug fixes since CAM4-Oslo (alas!)
10) Nitrate aerosols: in progress
Indirect RF in CAM4-Oslo vs. ERF ACI in CAM5-Oslo (W m\(^{-2}\)):
(Only minor changes in direct radiative forcing, ca. -0.1 - 0.0 W m\(^{-2}\))

<table>
<thead>
<tr>
<th></th>
<th>SW</th>
<th>LW</th>
<th>Main new features/bug-fixes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAM4-Oslo</td>
<td>-0.91</td>
<td>+0.01</td>
<td>(Indirect RF; NorESM1 for CMIP5)</td>
</tr>
<tr>
<td>Ind. RF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAM5.3-Oslo</td>
<td>-0.92</td>
<td>+0.14</td>
<td>Most recent CAM5.3-Oslo version</td>
</tr>
<tr>
<td>ERF ACI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1.27</td>
<td>+0.22</td>
<td>New emissions, chemistry and aerosol cloud interactions, assumed hygroscopicity for CCN activation, and b.b. OM/OC=1.4 (reduced from 2.6)</td>
</tr>
<tr>
<td></td>
<td>-1.16</td>
<td>+0.22</td>
<td>New sea-salt parameterization</td>
</tr>
<tr>
<td></td>
<td>-1.46</td>
<td>+0.26</td>
<td>Bug-fixes for aerosol condensation, halved dust emissions</td>
</tr>
<tr>
<td></td>
<td>-1.82</td>
<td>+0.34</td>
<td>On-line terrestrial BVOC \rightarrow SOA life-cycling</td>
</tr>
<tr>
<td></td>
<td>-1.71</td>
<td>+0.41</td>
<td>New Ice-Nucleation scheme and daily oxidants</td>
</tr>
<tr>
<td></td>
<td>-1.20</td>
<td>+0.33</td>
<td>On-line DMS & oceanic biogenic POM</td>
</tr>
</tbody>
</table>
Hypotheses studied:
- Nucleation over oceans is high in PI due to inefficient condensation combined with large BVOC emissions upwind.
 - In NH, this is compensated by large PD SO2-emissions.
- Organic aerosols influence sea salt hygroscopicity
- Feedback to DMS emissions
- Different oxidant levels in PD and PI
Thank you for the attention.
Different effect of nucleation NH/SH

Difference in nucleation-rate PD – PI in REF-simulation. Increased nucleation in NH (due to larger SO2 I guess), but decreased nucleation over the areas where there are mostly sea-salt. (Due to more pulluted atmosphere in PD acting as “condensation sink for H2SO4(g)"

Diagram:

- **Positive values**
- **Negative values**

Legend:

- **Nucleation rate (#/cm3/s)**
- **Data Min = -2.6, Max = 28.8**
Cloud water and ice

Free-running model has 10% higher LWP than the nudged version.
Cloud-fraction

M-G 1.0

CLDTOT avg = 0.62

M-G 1.5

CLDTOT avg = 0.65

CLDLOW avg = 0.38

CLDLOW avg = 0.41
Complex aerosol-scheme extended since NorESM1 (CMIP5):

- Improved treatment of SOA/\(\text{SO}_4\) nucleation and condensation.
- BVOC-->SOA explicit.
- Interactive marine DMS, bio-particles, sea-salt, and dust.
- Explicit concentrations in cloud droplets.

25 transported components
CAM5.3-Oslo

with nudging towards CAM5.3-AMIP U,V,T-fields

6 year simulations PD and PI, 2 final years used for statistics.

- M-G 1.0
 NorESM2-version 18.
 January 2016

- M-G 1.5
 Morrison-Gettelmann 1.5 is used instead of MG