Simulation of Polar Ozone Depletion: An Update

D. Kinnison (NCAR),
S. Solomon (MIT), and J. Bandoro (MIT)

February 17, 2015

WACCM Working Group Meeting, Boulder Co.
While activation may take place during dark polar winter, substantial ozone losses require that sunlight as well as activated chlorine (and bromine) be present to catalytically destroy ozone.
Antarctic Vortex, 3-year Mean area coverage.

<= Supercooled Ternary Solution (STS), with some solid mixtures

STS is forming in early winter (~60%) at 20km.

<= Water-Ice (and STS)

<= STS-NAT clouds (low NAT #density)

<= STS-NAT clouds (high NAT #density)
Modifications to PSC Parameterization: 80/20 partitioning

Equilibrium Approach for WACCM...

- Considine et al., JGR, 2000.
 - Settling Velocity
- Kinnison et al., JGR, 2007.
- Empirically, the partitioning of 80% total HNO₃ into STS and 20% into NAT best represents the evolution of HNO₃(g) in WACCM.
- CALIOP measurements show PSCs Fractional area is >60% in early winter (Pitts et al., 2009).
- Wegner et al., JGR, 2013.
The model shows significantly less scatter than the satellite observation due to the simplification that all PSCs form instantaneously with a prescribed size distribution.
There is no temporal offset in gas-phase HNO₃ between model and Obs.

Mixture of NAT and STS forms in late May / early June.

Model DeNOy occurs throughout the winter / spring period.

Model overestimates HNO₃ (g) - larger NAT radius needed?
We have updated the PSC representation in WACCM using Aura MLS and CALIOP data as constraints (Wegner et al., JGR 2013).

The model now has a mixed phase of STS and NAT in early winter that is more consistent with CALIOP data.

The evolution of gas-phase HNO$_3$ also is in better agreement with Aura MLS.

We also updated (not shown) the dehydration threshold for polar stratospheric H$_2$O. We were dehydrating at 80% saturation of water over ICE. We are now dehydrating at 100%.
Examine PSC Assumptions on Ozone Depletion

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Temperature</th>
<th>PSCS</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Het</td>
<td>-</td>
<td>NONE</td>
<td>Zeroed halogen het. rates.</td>
</tr>
<tr>
<td>Reference</td>
<td>-</td>
<td>ALL TYPES</td>
<td>CCMI Version</td>
</tr>
<tr>
<td>2Kbias</td>
<td>-2K applied</td>
<td>ALL TYPES</td>
<td>Only to the Het Module.</td>
</tr>
<tr>
<td>3xSAD</td>
<td>-</td>
<td>ALL TYPES</td>
<td>Show the sensitivity to sulfate SAD in polar region only.</td>
</tr>
<tr>
<td>REFnat</td>
<td>-</td>
<td>ALL TYPES</td>
<td>2-NAT MODES (0.0001, 5 particles cm⁻³)</td>
</tr>
<tr>
<td>SOLID</td>
<td>-</td>
<td>NAT, ICE</td>
<td>Liquid PSCs reactivity zeroed.</td>
</tr>
<tr>
<td>LIQUID#1</td>
<td>T≥195K</td>
<td>LBS</td>
<td>Test Drdlia+Muller 2012 result.</td>
</tr>
<tr>
<td>LIQUID#2</td>
<td>T≥192K</td>
<td>LBS, ~STS</td>
<td>STS starts to form.</td>
</tr>
<tr>
<td>LIQUID#3</td>
<td>-</td>
<td>LBS, STS</td>
<td></td>
</tr>
</tbody>
</table>
TOZ (DU) *** 82° S *** Zonal Mean *** 2011

OMI = △

- NoHET [Excluding N$_2$O$_5$+H$_2$O]
- REF [Standard CCM1 REFClSD]
- REF -2K [Applied to Het. Module]
- REF 3xSAD [Applied to CCM1 Sulfate SAD]

Dobson Units (DU)

Day-of-Year

~160DU
TOZ (DU) *** 82° S *** Zonal Mean *** 2011

OMI = △

NoHET [Excluding N₂O₅ + H₂O]
REF [Standard CCM, REFC1SD]
REF -2K [Applied to Het. Module]
REF 3xSAD [Applied to CCM, Sulfate SAD]
SOLID [ICE and NAT PSCs Only]
TOZ (DU) *** 82° S *** Zonal Mean *** 2011

- OMI = △
- Dobson Units (DU)
- NoHET [Excluding N$_2$O$_5$+H$_2$O]
- REF [Standard CCM1 REFC1SD]
- REF -2K [Applied to Het. Module]
- REF 3xSAD [Applied to CCM1 Sulfate SAD]
- SOLID [ICE and NAT PSCs Only]
- LIQUID#1 [T \geq 195K; w/DeNOY at all T]
- LIQUID#2 [T \geq 192K; w/DeNOY at all T]
- LIQUID#3 [T no limit; w/DeNOY at all T]
NOTE: A different Solid/Liquid approach gives similar TOZ.
April 3, 2011

SD-WACCM No HET Sim

REF - NoHET
-57 DU

-2Kbias - NoHET
-96 DU

3xSAD - NoHET
-75 DU

-2Kbias & 3xSAD - NoHET
-118 DU
TOZ Summary

• In the SH, the REF case underestimates the observed TOZ (OMI) by approximately 25DU.

• In the SH, adding a -2K bias to the heterogeneous module overestimates the depletion.

• In the SH, adding a 3xSAD to the input CCM sulfate SAD (which is consistent with small volcanic eruptions) shows very good agreement with OMI TOZ.

• The model has difficulty representing the observed TOZ in the NH. Only when the -2K bias and 3xSAD is applied does the model come close to the observed decrease. More work is needed to understand this model/observed difference.

• The depletion due to LIQUIDS and SOLIDS is not additive.
 • REF ≠ SOLID only + LIQUID#3
Activation vs Deactivation: 74° S, 61hPa

Chlorine Activation: Sum of all het. Rates that produce chlorine.

Chlorine Deactivation: Sum of the rate that produce NO\(_2\) (J HNO\(_3\), HNO\(_3\)+OH) and Cl+CH\(_4\) => HCl

Both liquid PSCs and water-ICE are important for chlorine activation at this location in the reference cases.

Overall – a very good representation of O\(_3\) depletion.

HNO\(_3\)(g), H\(_2\)O(g) and T in good agreement with MLS =>
LIQUI D#2 shuts off ozone loss process by converting a great deal of active chlorine back into the reservoir species (ClONO₂).

If deactivation into ClONO₂ occurs too early, related chemical indicator is a reduced rate of formation of HCl at later times.
Activation vs Deactivation: 74°S, 61hPa

[Graphs showing the dynamics of Total Cl and Chlorine activation at different levels: REF, LIQ#2 T≥192K, and SOLID.]

Species (ppbv)
HCl Rate Change as an Indicator of Heterogeneous Processing.

Vortex Core, 52hPa

\[
\frac{d[HCl]}{dt} = -k \cdot [Cl] \cdot [O_3] + k' \cdot [Cl] \cdot [CH_4]
\]

Douglass et al., 1995

Production and loss chemistry of ClONO2 is key.

Vortex Edge, 52hPa

\[
\frac{d[HCl]}{dt} = -k \cdot [Cl] \cdot [O_3] + k' \cdot [Cl] \cdot [CH_4]
\]

Cl + O_3 \rightarrow ClO + O_2

Cl + CH_4 \rightarrow HCl + CH_3,

Douglass et al., 1995
HCl Rate Change as an Indicator Het. Processing.

2011 HCl, CIONO2 Tendencies at 32.0 hPa -75 to -65
Summary

- We find that the occurrence of cold temperatures and PSC chemistry at $T<192$K is essential to produce substantial ozone loss (O3L).

- This conclusion is bolstered by broad agreement of the temporal behavior of computed ozone and related species (HNO$_3$, H$_2$O, HCl) compared to Aura MLS.

- The magnitude of the calculated TOZ in both polar regions is sensitive to small differences in temperature and sulfate surface area density (~10-40DU).
 - These sensitivities are important in quantifying ozone recover due to halogens.

- These results confirm earlier studies suggesting that liquid PSCs particles are sufficient to simulation nearly all of the O3L using current model chemistry.
 - However, solid PSCs do play an important role in de-NOY and de-H2O. They also add to the O3L for altitudes >18km.
 - We have shown that the results for O3L from each particle type are not additive.

- We’ve shown that the rate of change of HCl can be used as a key indicator of ozone depletion chemistry, primarily outside of the vortex core.