Coupling ROMS and BEC: Application to the North Pacific

It is still under construction.

Misumi, K., Tsubono, T., Tsumune, D. and Yoshida, Y. Central Research Institute of Electric Power Industry
Marginal seas are small, but are high productivity and playing an important role on biogeochemical cycles in the ocean.
Marginal seas are small, but are high productivity and playing an important role on biogeochemical cycles in the ocean.

Chl a (ug/L)
by AQUA/MODIS
Marginal seas are small, but are **high productivity** and playing an **important role** on biogeochemical cycles in the ocean.

Chl a (ug/L) by AQUA/MODIS

Sedimentary iron flux (mmol/m²/yr)
Moore & Braucher (2008)
Nishioka et al. (2013)
Dissolved iron concentrations in the North Pacific

Compiled data by Tagliabue et al. (2012)
Seasonal Biological Drawdown of Seawater pCO₂

Takahashi et al. (2002)
We investigated the iron transport process using \textit{POP+BEC (1deg)}

\textbf{Misumi et al. (2011)}
Recently, my colleague Takaki developed a high-res. North Pacific model (1/12-1/4 deg.) using ROMS that can represent the pathway of the Kuroshio and the formation of NPIW realistically.

I want to revisit sedimentary iron transport using the model, and decided to port BEC to ROMS.
BEC

POP (z-coordinate)

Figs of the vertical coordinates are from Marshall et al. (2004)
BEC

- Photoadaptation
- Chlorophyll pico/nano diatoms diazotrophs
- Growth
- N$_2$ Fixation
- Calcification

Inorganic Tracers
- NO$_3$,
- NH$_4$,
- PO$_4$,
- Si(OH)$_4$,
- Fe,
- O$_2$,
- DIC & Alkalinity

Zooplankton (adaptive)

- Grazing

Mortality & Aggregation
- Detritus suspended/DOM large (POM, silica, CaCO$_3$, dust)

Remineralization & Dissolution

Excretion

Mortality & Sloppy Feeding

ROMS (s-coordinate)

- Figs of the vertical coordinates are from Marshall et al. (2004)

POP (z-coordinate)
BEC

- Photoadaptation
- Chlorophyll pico/nano diatoms diazotrophs
- Phytoplankton pico/nano diatoms diazotrophs
- Growth
- N₂ Fixation
- Calcification
- Grazing
- Zooplankton (adaptive)
- Inorganic Tracers: NO₃, NH₄, PO₄, Si(OH)₄, Fe, O₂, DIC & Alkalinity
- Excretion
- Mortality & Aggregation
- Remineralization & Dissolution
- Detritus suspended/DOM large (POM, silica, CaCO₃, dust)
- Sinking

ROMS (s-coordinate)

- Calculates depth(z) of the s-coordinate, and passes it to BEC
- Handles modules used in BEC depending on POP

Figs of the vertical coordinates are from Marshall et al. (2004)
Experiments by ROMS+BEC

<table>
<thead>
<tr>
<th></th>
<th>1D-model</th>
<th>3D mid-res.</th>
<th>3D high-res.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>50°N, 145°W</td>
<td>20°S-65°N, 109°E-75°W</td>
<td></td>
</tr>
<tr>
<td>H & V reso.</td>
<td>45 layers</td>
<td>1°, 45 layers</td>
<td>1/12°-1/4°, 45 layers</td>
</tr>
<tr>
<td>Simulated period</td>
<td>40 years</td>
<td>30 years</td>
<td>3 years</td>
</tr>
</tbody>
</table>
Experiment w/ 3D mid-res. ROMS+BEC

To confirm ROMS+BEC can simulate BGC variables with a comparable level as POP+BEC (gx1v6).
Experiment w/ 3D mid-res. ROMS+BEC

To confirm ROMS+BEC can simulate BGC variables with a comparable level as POP+BEC (gx1v6).

1. Calculated POP+BEC for 110 years, and made a monthly average of the last 10 years (POP+BEC clim.).
Experiment w/ 3D mid-res. ROMS+BEC

To confirm **ROMS+BEC** can simulate **BGC variables** with a comparable level as **POP+BEC (gx1v6)**.

1. Calculated **POP+BEC** for 110 years, and made a monthly average of the last 10 years (**POP+BEC clim.**).

2. Calculated **ROM+BEC** for 30 years, using **POP+BEC clim.**
Experiment w/ 3D mid-res. ROMS+BEC

To confirm ROMS+BEC can simulate BGC variables with a comparable level as POP+BEC (gx1v6).

1. Calculated POP+BEC for 110 years, and made a monthly average of the last 10 years (POP+BEC clim.).

2. Calculated ROM+BEC for 30 years, using POP+BEC clim.
 i. as the initial condition (Jan. data),
Experiment w/ 3D mid-res. ROMS+BEC

To confirm **ROMS+BEC** can simulate **BGC variables** with a comparable level as **POP+BEC** (gx1v6).

1. Calculated **POP+BEC** for 110 years, and made a monthly average of the last 10 years (**POP+BEC clim.**).
2. Calculated **ROM+BEC** for 30 years, using **POP+BEC clim.**
 i. as the initial condition (Jan. data),
 ii. as the lateral boundary conditions and
Experiment w/ 3D mid-res. ROMS+BEC

To confirm ROMS+BEC can simulate BGC variables with a comparable level as POP+BEC (gx1v6).

1. Calculated POP+BEC for 110 years, and made a monthly average of the last 10 years (POP+BEC clim.).

2. Calculated ROM+BEC for 30 years, using POP+BEC clim.
 i. as the initial condition (Jan. data),
 ii. as the lateral boundary conditions and
 iii. as the nudging data (75 days) for T & S in the whole domain,
Experiment w/ 3D mid-res. ROMS+BEC

To confirm ROMS+BEC can simulate BGC variables with a comparable level as POP+BEC (gx1v6).

1. Calculated POP+BEC for 110 years, and made a monthly average of the last 10 years (POP+BEC clim.).

2. Calculated ROM+BEC for 30 years, using POP+BEC clim.
 i. as the initial condition (Jan. data),
 ii. as the lateral boundary conditions and
 iii. as the nudging data (75 days) for T & S in the whole domain,
 and using the same surface boundary conditions.
Experiment w/ 3D mid-res. ROMS+BEC

To confirm ROMS+BEC can simulate BGC variables with a comparable level as POP+BEC (gx1v6).

1. Calculated POP+BEC for 110 years, and made a monthly average of the last 10 years (POP+BEC clim.).

2. Calculated ROM+BEC for 30 years, using POP+BEC clim.
 i. as the initial condition (Jan. data),
 ii. as the lateral boundary conditions and
 iii. as the nudging data (75 days) for T & S in the whole domain,

 and using the same surface boundary conditions.

3. Compare the last year data of ROMS+BEC w/ POP+BEC clim.
Result: 3D mid-res. (ann. SSH & vertical vel. of Jan. at 200m)
Result: 3D mid-res. (annual mean temp. at 200m)
Result: 3D mid-res. (winter MLD defined as anomaly of σ_θ)
Result: 3D mid-res. (summer MLD defined as anomaly of σ_9)
Result: 3D mid-res. (annual mean NO$_3$ at surface)
Result: 3D mid-res. (annual mean Chl a at surface)
Result: 3D mid-res.
Statistics are calculated for the North Pacific domain.
Result: 3D high-res. (annual mean Chl a at surface)
Result: 3D high-res. (Chl a)
Conclusions

• **BEC works fine with ROMS** using s-coordinate.
 • The model skill simulating obs. is **comparable** to that in POP+BEC.
 • **Some systematic differences** needed to be addressed are observed.

• **Some BGC tendencies are calculated in the ocean model routines;** we have not taken into account yet.
 • virtual fluxes for DIC and ALK
 • gas exchange

• The **high-res. model** results are **impressive**, but it is a matter **how to initialize the model** owing to its high computational cost.
Result: 1D-model
Result: 1D-model
Result: 3D mid-res. (Fe)