Recent results and products from remote sensing of ice sheet velocities

Twila Moon1,2, Ian Joughin2, Ben Smith2, Michiel van den Broeke3, Willem Jan van de Berg3, Brice Noël3, Mika Usher2

Ted Scambos1, Mark Fahnestock4, Marin Klinger1, Terry Haran1, Tom Milliman5

1National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder
2Polar Science Center, Applied Physics Lab, University of Washington
3Institute for Marine and Atmospheric Research, Utrecht University
4Geophysical Institute, University of Alaska, Fairbanks
5Institute for the Study of Earth, Oceans, and Space, University of New Hampshire
55 study glaciers: Marine-terminating, fast-flowing

Study period: 2009-2013

Runoff data: RACMO2.3
Terminus data: Landsat 7 and 8 TerraSAR-X
Velocity data: TerraSAR-X InSAR & speckle tracking

Distinct patterns of seasonal Greenland glacier velocity -- Moon et al. (2014), GRL
Mechanisms for speedup

1. Terminus retreat with reverse slope bed

2. Increase in basal water pressure

[Creyts and Clarke, 2010]

[Carr et al., 2013]

[Creyts and Clarke, 2010]
Type 1: Sustained summer speedup
Type 1: High sensitivity to terminus

- Slow speed
- Faster speed

[Graph showing relative terminus position and detrended velocity over years 2009 to 2014]

[Diagram showing faster and slower speeds]
Type 2: Distributed network
Type 2: Distributed network

Velocity is determined by runoff *without* distributed—channelized switch.
Type 3: Channelized drainage evolves
Type 3: Channelized drainage evolves

Velocity is determined by runoff with distributed—channelized switch.
- 2010 & 2012 response: 5 glaciers
- 2012 response: 7 glaciers
- Regional distribution of seasonal terminus behavior suggests that supraglacial or englacial water storage may be important.
- Initial look consistent with along-glacier evolution of hydrology system.
Measuring broad-area surface velocity with Landsat 8

Ice Flow Speed (m/d)

- 0.00
- 1.25
- 2.50
- 3.75
- 5.00

2013-2014
Excellent spatial and temporal coverage

- Taking advantage of Landsat 8’s improved radiometric resolution and geolocation accuracy
- Creating both annual mosaics and seasonal scale time series
- Fast processing speed for near real time measurements
Pairing Landsat 7 and Landsat 8

“There is variability in flow rate on any time scale you care to consider--from hours to decades to centuries. Pretty cool.”

- Christina Hulbe

[from Christina Hulbe]
Forthcoming MEAsUREs dataset for ice front position

- Terminus position maps for: 2000/01 and annually 2005/06 – 2009/10
- 228 glaciers
- Land- and marine-terminating
- Making Earth System Data Records for Use in Research Environments (MEAsUREs), hosted at the NSIDC (nsidc.org/data/measures)
Summary

- Seasonal velocity patterns:
 - High sensitivity to seasonal terminus behavior for some glaciers, but more glaciers respond primarily to changes in the hydrologic system
 - Signature velocity patterns for glaciers *with* distributed--channelized switch and glaciers *without* distributed--channelized switch
 - Hydrologic link has dynamic implications for annual melt, supra/englacial water storage, along-glacier evolution of hydrology

- Glacier and ice sheets surface velocities from Landsat 8
- Forthcoming MEAsUREs dataset for annual terminus positions for Greenland
Type 2: Summer spike
Type 3: Late summer deceleration
Record Greenland surface melt: 2010 & 2012

[2010 Melt Day Anomaly][Tedesco et al., 2011]

[2012 Melt Day Anomaly][Tedesco et al., 2013]