GCM - Ice Model Coupling:
Adventures in Energy Conservation

Robert Fischer, Sophie Nowicki, Max Kelley, Gavin Schmidt

NASA Goddard Institute of Space Studies
New York City

October 13, 2014
Synchronous Two-Way Coupling

Important to resolve transients (human timescales).

Challenge:
- Balance mass and energy budget for (potentially) non-conservative ice model.
- Compute non-conservation; dump extra in ocean.
Energy Budget

Account for energy flux in each 2D ice grid cell:

\[
\psi(x, y, t) = \psi_0 + \int_{t_0}^{t} (e_s + e_b + e_c + h_s + h_b + h_i + \nabla \cdot \psi \mathbf{u} + \epsilon) \, dt
\]
Energy Budget

Account for energy flux in each 2D ice grid cell:

\[\psi(x, y, t) = \psi_0 + \int_{t_0}^{t} (e_s + e_b + e_c + h_s + h_b + h_i + \nabla \cdot \psi \mathbf{u} + \epsilon) \, dt \]

\(\psi_0 \)	Initial enthalpy state of ice sheet	J/m²
\(\psi \)	Enthalpy of ice sheet	m/s
\(\mathbf{u} \)	Ice velocity field	
\(e_s \)	Enthalpy flux of SMB (from snow/firn)	W/m²
\(e_b \)	Enthalpy flux of runoff	
\(e_c \)	Enthalpy flux of calving	
\(h_s \)	Conductive heat flux through top surface	W/m²
\(h_b \)	Conductive basal heat flux	
\(h_i \)	Strain heating rate	
\(\epsilon \)	Unaccounted energy flux	

- GCMs do not track gravitational potential.
- GCM must dispose of \(h_i + \epsilon \) in non-physical way.
Coupling Fields

Initialization:

Ice Model → GCM

1. T, top of ice sheet
2. Depth of top layer
3. Elevation on ice grid

GCM Computes:

1. Conductive Heat Flux

GCM → Ice Model

1. Surface Mass Balance
2. Enthalpy of SMB
3. T at bottom of ice surface model

Ice Model → GCM

Mass and Enthalpy:

1. SMB
2. Internal Advection
3. Basal Runoff
4. Vertically-Integrated State
5. ϵ non-conservation (mass, energy)

Energy:

1. Strain Heating
2. Geothermal Flux

Other:

1. T, top of ice sheet
2. Depth of top layer
3. Elevation on ice grid
Step 1: Initialization

Elevation (m)
Surface T (°C)
Depth of Top Grid Point (m)
Step 2: GCM \longleftrightarrow Ice Heat Flow

Goal:
Compute q_n, heat flux between models

Challenges:

1. **Differing Parameterizations**
 - Solving heat equation between FD and non-FD model.
 - This FD ice model has no gridpoint at surface.

2. **Differing scales**
 - Large Δz yields large ΔT, inappropriate for small scale of $z_1 \ldots z_n$.
 - T_{n+1} doesn’t change over multiple timesteps for T_n
Step 3: GCM Outputs

Surface Mass Balance
\((\text{kg m}^{-2} \text{ s}^{-1})\)

Surface T (°C)
PISM Mass Budget (kg m$^{-2}$ s$^{-1}$)

Surface Mass Balance

Internal Advection

Basal Runoff
PISM Mass Budget (kg m$^{-2}$ s$^{-1}$)

Total Mass Flux

ϵ: mass

- -3.5×10^{-16}
- 0
- 3.5×10^{-16}
PISM Energy Budget: Enthalpy Flux (W/m²)

- Surface Mass Balance
- Internal Advection
- Basal Runoff
PISM Energy Budget: Heat Flux (W/m2)

Strain Heating

Geothermal Flux
PISM Energy Budget: Results ($W\,m^{-2}$)

Total Enthalpy Flux

ϵ: enthalpy
Discussion

Why the enthalpy problem? Possibilities:

- No grid point at top of ice model? (Uncontrolled forcing when setting Dirichlet BC)
- Disparate time and space scales? (with explicit timestepping at model interface)
- Would Neumann BC for ice model help?
- Problematic parameterization in ice surface?
- Just a spin-up problem?
- We will find out with 1-D prototype.

Thanks to Ed Bueler, Constantine Khroulev, Andy Aschwanden and the PISM Team