Bioclimatology Department

University of Göttingen

Fernando Moyano
Yuanchao Fan
Rijan Tamrakar
Alexander Knohl
Where we use or plan to use CLM

1. Tropical Lowland Rainforest Transformation Systems (Sumatra, Indonesia) (Yuanchao Fan)

2. Effects of management/composition on forest response to extreme climate events (Rijan Tamrakar)

3. Introducing process based representations of soil C dynamics (myself)
Tropical Lowland Rainforest Transformation (Sumatra, Indonesia)

The background

• Tropical lowland forests are experiencing the strongest losses worldwide, with regions in Sumatra seeing some of the fastest transformations.

• These natural lowland forests are transformed into rubber and oil palm plantations.

• Similar intensive land use change is expected to continue happening extensively in Indonesia.
Tropical Lowland Rainforest Transformation (Sumatra, Indonesia)

Upscaling of carbon fluxes to landscape level
- Remote sensing various land use types (B05)
- Land surface modelling (A03)
- Integrated modelling (B10)

Four target rainforest transformation systems
Lowland rainforest, jungle rubber, rubber and oil palm plantation
Tropical Lowland Rainforest Transformation (Sumatra, Indonesia)
Simulating the Oil Palm (Yuanchao Fan)

- Evergreen phenology
- Seasonal-deciduous phenology
- Stress-deciduous phenology
- Annual crop phenology
- **Perennial evergreen crop phenology**
 - Oil Palm phenology
Palm Phenology

- Planting to leaf initiation
- Leaf expansion
- Leaf maturity
- Fruit fill
- Fruit harvest and output
- Leaf senescence and pruning
The oil palm PFT structure

1. leaf growth
2. fruit-fill
3. harvest
4. leaf pruning

P = Phytomer

Leaf
Fruit
P1
P2
P3
P4
P5
P6

Roots

3/9/2015
Palm Phenology

Phytomer rank

Initiation Expansion Maturity Fruit-fill Harvest Death/Pruning

A Phyllochron

Growing degree days (base 15°C)
The spear leaf

- The “spear” leaf develops for nearly 2 years before it expands to be a photosynthetically active leaf.
Leaf area index

Field Measured
With pre-expansion phase
Without pre-expansion phase

One-sided leaf area index (m²/m²)

Year

2002 2003 2004 2005 2006 2007 2008 2009 2010

(2014) 3.7

0.35

1.68
Pruning

Phytomer LAI

Feb 2005

Phytomer (L)

0.00 0.01 0.02 0.03 0.04 0.05 0.06

PLAI [indgrid=0, phytomer=*, time=*]
Trophic Competition

• Vegetative demand and reproductive demands compete under stress conditions

• *Supply: Demand* ratio affects inflorescence gender ratio and abortion rate

\[RSD = \frac{C_{avail}}{D_{veg} + D_{rep}} \]

• \(r_{sex} = m_1 (1 - RSD) \); when \(-27 \leq \text{Rank} \leq -21\)
• \(r_{abort} = m_2 (1 - RSD) \); when \(7 \leq \text{Rank} \leq 12\)
Carbon and Nitrogen Allocation

- Annual crops: allocation to leaf/stem/root decreases continuously until grain-fill, whereas allocation to grain increases from grain-fill till harvest.
Carbon and Nitrogen Allocation

- The oil palm maintains LAI and produces continuously throughout its entire life cycle
- Allocation to leaf/stem/root and fruit needs to be balanced
Two-step allocation

• Plant level: allocate available C and N to root, stem, and overall leaf (vegetative) + overall fruit C/N pools (reproductive)

• Phytomer level: allocated C and N to the leaf and fruit pools are partitioned between all phytomers
Objectives

Understand and model changes in:

- Albedo
- Water/Energy Fluxes
- Carbon Cycle

Then scale up to the region and predict for different future scenarios
Introducing process based representations of soil C dynamics

• A theory based approach is the better option, even if agreement with data shows little improvement
• Enough theory and evidence is available to know that we can do better
• Land Use Change (e.g. Indonesia) = Big Experiment
Introducing process based representations of soil C dynamics

Temperature

\[r_{\text{soil}} = Q_{10} \left(\frac{T_{\text{soil},j} - T_{\text{ref}}}{10} \right) \]

Q10 = 1.5

Moisture

\[r_{\text{water}} = \sum_{j=1}^{5} \left\{ \begin{array}{ll}
0 & \text{for } \Psi_j < \Psi_{\text{min}} \\
\log\left(\frac{\Psi_{\text{min}}/\Psi_j}{\Psi_{\text{max}}/\Psi_j}\right) & \text{for } \Psi_{\text{min}} \leq \Psi_j \leq \Psi_{\text{max}} \\
1 & \text{for } \Psi_j > \Psi_{\text{max}}
\end{array} \right. \]
Introducing process based representations of soil C dynamics

Temperature

• Soil Incubations show higher Q10 (>=2)
• Several studies suggest a higher sensitivity for slower pools.
• Slow pools have low contributions to R_{eco}, therefore will not noticeably influence short term R_{eco} T sensitivity
• However, they will respond to T changes in longer time periods - new equilibrium

Lefevre, Barre, Moyano, et al. GCB, 2014

• In agreement with theory
• Relates T-sensitivity to pool turnover time
Introducing process based representations of soil C dynamics

Moisture

Priming Effect
- Michaelis-Menten Kinetics: dependence on [S]
- SOM-Mic distance

Birch Effect
- enzyme activity and diffusion dependence on moisture not equal
- adsorption/desorption

SOM-Enzyme Reaction Site

SOM-Microbe Distance

- Enzymes
- Litter, SOC
- Enzymatic Reactions
- DOC
- Adsorption - Desorption
- Mineral Surface

- Diffusion
- M, t

- Enzymes
- Microbes
- Enzymatic Reactions
- DOC
- Adsorption - Desorption
- Mineral Surface
- Microbes
- Uptake
- M, t

T-response variability
- Chemical quality (intrinsic T resp)
- [S] (Michaelis-Menten)
- Diffusion interactions

Negative Priming Effect
- adsorption/desorption

Soil Texture
- SOM Quality
- pH

Manzoni, Moyano, et al. in prep.
Introducing process based representations of soil C dynamics

Moisture

Moisture effect through C and enzyme diffusion:

\[F_S = h_S \left(C^w_S - C^w_{S,0} \right) \]

\[h_S(\theta) = \frac{vD_S(\theta)}{\delta^2} \]

\(\delta \) : characteristic distance between microbial cells and C substrate
That’s it

=============== SUCCESSFUL TERMINATION OF CPL7-CCSM ================
=============== at YMD,TOD = 10106 0 ================
=============== # simulated days (this run) = 5.000 ================
=============== compute time (hrs) = 0.001 ================