The Water-Food-Economy-Climate nexus of ALPS scenario

Kenichi Wada, Keigo Akimoto, Ayami Hayashi, Fuminori Sano and Takashi Homma

Research Institute of Innovative Technology for the Earth (RITE)
The ALPS (ALternative Pathways toward Sustainable development and climate stabilization) project explores policy implications for mitigation in the context of sustainable development.

Climate policy is one of the sustainable development goals. Mitigation options need to be implemented not only from the climate perspective but also from the well-balanced multiple objectives for sustainable development with deep understanding of their trade-offs and synergies.

The project covers the nexus of climate, water, food, land use, energy and economy.
Research Coverage

Mid-term world energy and economic model: DEARS (until 2050)

Ultra-long-term energy and macroeconomic model: DNE21

Simplified climate change model: MAGICC6

Grid-based estimation of climate change: using results from MIROC3.2

Assessment model for biodiversity (Impacts on terrestrial ecosystem and ocean acidification)

Assessment model for health impact

Assessment of population living in poverty

Assessment of food demand/supply, water resource and land use change

Estimation model for economic damages from global warming (developed by Nordhaus)

Assessment of food security

Mid-term world energy and mitigation measures assessment model: DNE21+ (until 2050)

Assessment of energy security (until 2050)

Assessment of water stress

GHGs excluding energy-related CO2

Impacts of global warming

Population, GDP

Socio-economy

Energy

Food, water resource, land use
<table>
<thead>
<tr>
<th>DNE21+ Model</th>
<th>LULUCF Model</th>
<th>Non-Energy CO2 Emissions Scenario</th>
<th>Non-CO2 GHG Assessment Model</th>
</tr>
</thead>
</table>
| • Assessment model for energy-related CO2 emissions
• 54 regions in the world
• Bottom-up modeling (200-300 specific technologies are modeled) | • Assessment model for Land use (land area for food, energy crops, and afforestation)
• CO2 emission from LULUCF
• 15-minute-grid model
• Crop productivity is estimated based on the GAEZ model | • Projection module for non-energy CO2 emissions
• 54 regions in the world
• Estimates of sectoral non-energy CO2 emissions to be consistent with GDP and production activities | • Assessment model for the five types of non-CO2 GHG emissions (CH4, N2O, HFCs, PFC, SF6)
• 54 regions in the world
• The methodology is similar to the USEPA assessment |

Integrated Assessment Framework covers 6 GHGs emissions, emission reduction costs and potentials, and cost-effective mitigation measures/technologies
The ALPS scenarios consist of three different axes:
1. Socio-economic scenarios
2. Climate change policy scenarios
3. Emissions scenarios consistent with Representative Concentration Pathways (RCPs)

Scenario A: Medium technological progress scenario

Scenario B: High technological progress scenario

ALPS core scenarios
- Scenarios for macro-level and socio-economic conditions in the long term
 - Scenario A: Medium technological progress scenario
 - Scenario B: High technological progress scenario

Scenarios for emission reduction levels
- ALPS-Baseline
- ALPS-CP6.0
- ALPS-CP4.5
- ALPS-CP3.7
- ALPS-CP3.0

Climate change policy scenarios
- I: Pluralistic society scenario
- II: Climate policy prioritized scenario
- III: Energy security prioritized scenario
Indicators for sustainability assessment

<table>
<thead>
<tr>
<th>Category</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic and poverty</td>
<td>Income (GDP per capita)</td>
</tr>
<tr>
<td></td>
<td>People living in poverty (incl. impacts of climate change and mitigation efforts)</td>
</tr>
<tr>
<td></td>
<td>Food access (amount of food consumption per GDP) (incl. impacts of climate change and mitigation efforts)</td>
</tr>
<tr>
<td></td>
<td>Energy access (access to grid electricity; People relying on the traditional use of biomass for cooking)</td>
</tr>
<tr>
<td>Agriculture, land-use, and biodiversity</td>
<td>Land area for Agriculture (incl. impacts of climate change)</td>
</tr>
<tr>
<td></td>
<td>Food security (amount of food imports per GDP) (incl. impacts of climate change and mitigation efforts)</td>
</tr>
<tr>
<td>Water</td>
<td>People living under water stress (incl. impacts of climate change)</td>
</tr>
<tr>
<td>Energy</td>
<td>Sustainable energy use (cumulative fossil fuel consumption)</td>
</tr>
<tr>
<td></td>
<td>Energy use efficiency (primary energy consumption per capita and per GDP)</td>
</tr>
<tr>
<td></td>
<td>Energy security (share of total primary energy consumption accounted for by oil and gas imports with country risks)</td>
</tr>
<tr>
<td>Climate change</td>
<td>Economic impact of mitigation measures (marginal abatement cost (carbon price) and GDP loss)</td>
</tr>
<tr>
<td></td>
<td>Global mean temperature change</td>
</tr>
<tr>
<td></td>
<td>Aggregated economic impact of climate change</td>
</tr>
</tbody>
</table>
Per-capita GDP Scenarios (Global Average, Baseline)

Per-capita GDP (Thousand 2000USD)

Note: GDP of SRES scenarios are adjusted to the price in 2000 from that in 1990.
Higher per-capita GDP induces lower population growth
Scenario A: Lower per-capita GDP * Higher population
Scenario B: Higher per-capita GDP * Lower population

Note: GDP of SRES scenarios are adjusted to the price in 2000 from that in 1990.
People Living in Poverty

ALPS-A Scenario

- Mitigation costs and residual damages are taken into account

Note: Constant and variant international poverty lines are adopted by using the poverty thresholds of income at constant 1.25$/day (‘C’) and at 1.25-2.83$/day affected by oil price increase (‘V’), respectively.

♦ As global economy grows, people living in poverty will decrease in the future
♦ Population below poverty line for CP3.0 will be slightly larger than others due to over-burden of mitigation efforts
Global Food Demand

Population decrease has larger impacts on food demands than per-capita income increase.
Food prices are affected by food productivity change and land use change.

Ambitious climate goal brings food productivity growth, but limits crop land for food production due to land-use for bioenergy production and afforestation.
Food access index: Food consumption (food demand * food prices) / GDP

Income growth mitigates vulnerabilities of food access. The impact of temperature increase on food productions are relatively small compared with the effects of income increase. Large scale forestation and bio-energy production for deep emissions cuts slightly increase vulnerabilities of food access.
Water Stress

♦ Water stress index

\[[R] = \frac{\text{Annual municipal, industrial and agricultural water withdrawal}}{\text{Annual water availability}} \]

♦ Water supply-demand model + Agro-land use model

Hayashi et al (2013)

*1 Pattern scaling AOGCM’s projections (MIROC3.2 (Medres))
*2 TRIP (Oki, 2001).
*3 Irrigation efficiency (Döll and Siebert, 2002)
*4 A constant demand for biofuel at the 2010 levels.
Change in the water stress in Asia

Scenario A
RCP4.5

Scenario A
SRES A2

[Y2030] [Y2050] [Y2100]

[R] relative to the 2010 level
-0.4 -0.2 -0.05 +0.05 +0.2 +0.4

- Rather than climate scenarios difference, the long term socio economic changes has bigger impact on the water stress
Most of indicators shows that the impacts of socio-economic development on sustainability are greater than those of climate change.

There are synergies between climate change and other sustainable development issues as well as trade-offs.

Consistent assessment for climate change and other sustainable development challenges help well-balanced decision making.

It is important to maintain balance in multiple sustainable objectives for our future well-being.

Our socio-economic scenarios are in process of updates in line with SSPs. Our research agenda includes distributional issues.