Pacific Decadal Variability in CCSM3

Wilbert Weijer (Los Alamos National Laboratory)
Niklas Schneider (University of Hawaii, Manoa)
Pacific Decadal Variability (PDV)

- North Pacific climate system displays variability on decadal time scales: PDV
 - Stochastic ocean response to atmospheric forcing
 - Preferred time scales due to
 - Unstable modes of coupled ocean/atmosphere interaction
 - Stochastically excited ocean modes
 - Stochastic resonance
Pacific Decadal Variability
Leading hypotheses

- Critical ingredients
 - Variability in North Pacific pressure system…
 - …generates Ekman pumping anomalies…
 - …setting off Rossby waves…
 - …that propagate westward…
 - …impact strength/location of KOE…
 - …and generate SST anomalies that impact atmosphere

- Time scale determined by *basin crossing time*
Pacific Decadal Variability in CCSM3

- In CCSM3
 - Significant spectral peaks in North Pacific climate system
 - Spectral peaks on *eastern* boundary
 - 8.5 and 17 yr time scales
Pacific Decadal Variability in CCSM3

Eastern boundary pressure

- P_{500} averaged along eastern basin boundary: P_{east}
Pacific Decadal Variability in CCSM3

Eastern boundary pressure

- P_{500} averaged along eastern basin boundary: P_{east}

Peaks at 17 and 8.5 years;
Pacific Decadal Variability in CCSM3 Impact on KOE SSTs

Spectra SST^{KOE} & P_{east}

![Graph showing spectral power for SST_KOE and P_east](image)

![Map showing temperature distribution](image)
Pacific Decadal Variability in CCSM3 Impact on KOE SSTs

Spectra SST_{KOE} & P_{east}

Coherence SST_{KOE} & P_{east}

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
Questions

- What causes spectral peaks at 8.5 and 17 yr in pressure on eastern basin boundary?
- Does it reflect a resonant mode in North Pacific climate system?
- Are 17 and 8.5 yr periodicities related?
The Model

- We analyze
 - CCSM3
 - 500 year control integration (b30.009)
 - 1990 conditions
 - Annually averaged fields of oceanic and atmospheric variables.
 - 2D fields
 - Baroclinic pressure integrated over upper 500 m (P_{500})
 - Other variables averaged over top 200 m
Hypotheses

- Rossby basin mode
- Passive response to tropical dynamics
- Coupled mid-latitude mode of air/sea interaction
- Stochastic resonance mechanism
Coherence Analysis

- Which variables $F(x, t)$ are involved in oscillations?
- Where is F coherent with P_{east} at 8.5 and 17 yr?
 - Coherence between F and P_{east}
 - Evaluate coherence at 17 yr or 8.5 yr
 - Determine significance @ 90%
 - Display
 - Coherence
 - Phase
Coherence Analysis

- Which variables $F(x, t)$ are involved in oscillations?
- Where is F coherent with P_{east} at 8.5 and 17 yr?
 - Coherence between F and P_{east}
 - Evaluate coherence at 17 yr or 8.5 yr
 - Determine significance @ 90%
 - Display
 - Coherence
 - Phase
- Where does F contain enhanced energy at 8.5 and 17 yr?
 - Spectral analysis of F
 - Evaluate spectral power at 17 yr or 8.5 yr
 - Determine significance @ 90%
 - Hatch significant regions
Coherence Analysis

Shading: coherence between F and P_{east} (where significant @ 90%)
Coherence Analysis

Shading: *coherence* between F and P_{east} (where significant @ 90%)

Contours: *phase* between F and P_{east}; phase progresses from 360° (black) to 0° (white)
Coherence Analysis

Shading: *coherence* between F and P_{east} (where significant @ 90%)

Contours: *phase* between F and P_{east}; phase progresses from 360° (black) to 0° (white)

Cross hatching: *spectral power* of F enhanced @ 90%
Lagged Correlation Analysis

- What role do variables $F(x, t)$ play in oscillation?

- Correlation between F and P_{east}
 - Lagged regression between F and P_{east}^{17} & $P_{east}^{8.5}$
 - P_{east}^{17}: 15 – 20 yr band-pass filter (Parks-McClellan)
 - $P_{east}^{8.5}$: 8 – 9 yr band-pass filter (Parks-McClellan)
 - $T = +/-8$ yr
Lagged Correlation Analysis

P_{east} leads F

F leads P_{east}

Zonal section 40°N
Lagged Correlation Analysis

PD_{200} (shading), Ekman pumping w_E (contours)

Advective characteristic (UVEL 200 m)
Rossby Basin Mode

- Westward propagating pressure anomalies
- Pressure homogenization along western, equatorial, and eastern boundaries
Rossby Basin Mode?
17 yr

- Dominant *eastward* propagation in upper 500 m

\[P_{500} \text{ vs } P_{\text{east}} \text{ at 17 yr} \]
Rossby Basin Mode?

17 yr

- Dominant *eastward* propagation in upper 500 m
- No coherent signal along western/equatorial boundary
Rossby Basin Mode?

8.5 yr

- Weaker, less widespread coherences

\[P_{500} \text{ (pressure integrated over upper 500 m)} \]
Rossby Basin Mode?

8.5 yr

- Weaker, less widespread coherences
- No clear western/equatorial connection

\(P_{500} \) (pressure integrated over upper 500 m)
Equatorial Origin

- Through the ocean
 - coastally trapped gravity waves
- Through the atmosphere
 - Significant spectral energy carried by atmospheric variables
Equatorial Origin?

8.5 yr

- Significant signal in eastern equatorial Pacific

P_{500} (pressure integrated over upper 500 m)
Equatorial Origin?
8.5 yr & 17 yr

Coherence of P_{500} along eastern boundary with P_{500} in eastern equatorial region
Equatorial Origin?

17 yr

- No signal in equatorial Pacific

Sea Level Pressure (SLP)
Equatorial Origin?

8.5 yr

- Significant signal in eastern equatorial Pacific
- But mechanism?

Sea Level Pressure (SLP)
Mid-latitude Coupled Mode

- Enhanced power carried both by ocean and atmosphere variables
Mid-latitude Coupled Mode?
8.5 & 17 yr

- No significantly enhanced energy in atmospheric variables at 8.5 & 17 yr

Sea Level Pressure (SLP)
Mid-latitude Coupled Mode?
8.5 & 17 yr

Average over 35°-45°N
Mid-latitude Coupled Mode?
8.5 & 17 yr

Average over 35°-45°N
Mid-latitude Coupled Mode?

8.5 & 17 yr

Average over 35°-45°N
Advective Resonance

- Advection carries water parcels through alternating (bipolar) forcing regime
- Enhanced power in atmosphere not critical
Advective Resonance

8.5 yr

- S_{200} anomaly generated east of dateline by Ekman pumping…
Advective Resonance

8.5 yr

- S_{200} anomaly generated east of dateline by Ekman pumping...
- ...is advected *eastward* by mean flow...
Adveective Resonance

8.5 yr

- S_{200} anomaly generated east of dateline by Ekman pumping…
- …is advected *eastward* by mean flow…
- …is amplified by coastal upwelling…
Advective Resonance

8.5 yr

- S_{200} anomaly generated east of dateline by Ekman pumping…
- ...is advected *eastward* by mean flow…
- ...is amplified by coastal upwelling…
- ...and run-off
Advective Resonance

8.5 yr

- Time scale determined by
 - *advection speed*
Advective Resonance

8.5 yr

- Time scale determined by
 - *advection speed*
 - *length scale* of forcing
Advective Resonance
8.5 yr

- Time scale determined by
 - advection speed
 - length scale of forcing
- \(~ 5 \text{ yr}~\)
Advective Resonance

8.5 yr

- Time scale determined by
 - *advection speed*
 - *length scale* of forcing

- ~ 5 yr
Advective Resonance

8.5 yr

- Baroclinic meridional velocity displays westward propagation with 1st baroclinic modal structure
- But connection with KOE region breaks up west of dateline
Advective Resonance
8.5 yr

- Barotropic Stream Function shows connection with KOE region
Advective Resonance
17 yr

- Bit less clear
 - $k = \frac{1}{2}$
 - Eastward propagation of coupled air/sea anomalies
 - Probably basin-wide signal
Advective Resonance
17 yr

- Bit less clear
 - $k = \frac{1}{2}$
 - Eastward propagation of coupled air/sea anomalies
 - Probably basin-wide signal
Conclusions

- Distinctive modes of decadal climate variability in North Pacific climate system in CCSM3
 - 8.5 and 17 yr
 - Energy on *eastern* boundary
 - Project onto SST in KOE region

- Possible advective resonance mechanism
 - Forcing dipole is interior/boundary Ekman pumping

- But
 - Relation 8.5 and 17 yr?
Dominant Modes of Variability

SST

EOF 1(SST): 32%
Dominant Modes of Variability

SST

EOF 1(SST): 32%
Dominant Modes of Variability

P_{500}

EOF 1(P_{500}): 17.1%
Dominant Modes of Variability
Spectral signatures

SST

P_{500}
Dominant Modes of Variability
Spectral signatures

SST

Peak at 25 years

P\textsubscript{500}

But nothing here!
Dominant Modes of Variability
Spectral signatures

SST

P_{500}

Peaks at 17 years
Dominant Modes of Variability
Spectral signatures

SST

P_{500}

Peaks at 8.5 years
Dominant Modes of Variability
Spectral signatures

SST

P_{500}

But nothing here!

Peaks at 10 and 12.5 years