Simulation of 137Cs activities off the Fukushima coast

Kazuhiro Misumi, Daisuke Tsumune, Takaki Tsubono and Yutaka Tateda

Central Research Institute of Electric Power Industry
The earthquake on Mar. 11, 2011 and subsequent tsunami resulted in accidental release of ^{137}Cs to the environment.
The earthquake on Mar. 11, 2011 and subsequent tsunami resulted in accidental release of ^{137}Cs to the environment.

Atmospheric deposition

Terada et al. (2012)
The earthquake on Mar. 11, 2011 and subsequent tsunami resulted in accidental release of 137Cs to the environment.

Atmospheric deposition

Terada et al. (2012)

Direct release to the ocean

Buesseler et al. (2011)
The earthquake on Mar. 11, 2011 and subsequent tsunami resulted in **accidental release of** ^{137}Cs to the environment.

Atmospheric deposition

Terada et al. (2012)

Direct release to the ocean

Buesseler et al. (2011)

Japan 1960-2010 baseline
The earthquake on Mar. 11, 2011 and subsequent tsunami resulted in **accidental release of ^{137}Cs** to the environment.

Atmospheric deposition

Terada et al. (2012)

Direct release to the ocean

- **Fukushima No.1 Nuclear Power Plant (1F NPP)**
- **Japan 1960-2010 baseline**

Buesseler et al. (2011)
To investigate 137Cs dispersion in the ocean
To investigate 137Cs dispersion in the ocean

ROMS (Fukushima)
Tsumune et al. (2012 & 2013)
To investigate 137Cs dispersion in the ocean

WRF + CAMx
Hayami et al. (in prep.)

ROMS (Fukushima)
Tsumune et al. (2012 & 2013)

Atmospheric deposition
Direct release from 1F NPP
Inflow from boundary sections
To investigate 137Cs dispersion in the ocean

- **WRF + CAMx**
 - Hayami et al. (in prep.)

- **ROMS (N. Pacific)**
 - Tsubono et al. (in prep.)

- **ROMS (Fukushima)**
 - Tsumune et al. (2012 & 2013)

- Atmospheric deposition
- Direct release from 1F NPP
- Inflow from boundary sections
To investigate 137Cs dispersion in the ocean

- **WRF + CAMx**
 - Hayami et al. (in prep.)

- **ROMS (N. Pacific)**
 - Tsubono et al. (in prep.)

- **ROMS (Fukushima)**
 - Tsumune et al. (2012 & 2013)

- **Sediment Model**
 - Misumi et al. (in prep.)
To investigate 137Cs dispersion in the ocean

- **ROMS (Fukushima)**
 - Tsumune et al. (2012 & 2013)

- **ROMS (N. Pacific)**
 - Tsubono et al. (in prep.)

- **WRF + CAMx**
 - Hayami et al. (in prep.)

- **Sediment Model**
 - Misumi et al. (in prep.)

- **Food Chain Transfer Model**
 - Tateda et al. (2013)

- Atmospheric deposition

- Direct release from 1F NPP

- Inflow from boundary sections
To investigate ^{137}Cs dispersion in the ocean

WRF + CAMx
Hayami et al. (in prep.)

Atmospheric deposition

Direct release from 1F NPP

ROMS (Fukushima)
Tsumune et al. (2012 & 2013)

ROMS (N. Pacific)
Tsubono et al. (in prep.)

Inflow from boundary sections

Sediment Model
Misumi et al. (in prep.)

Food Chain Transfer Model
Tateda et al. (2013)
ROMS (Fukushima)

Domain: 34°54’ N-40°00’ N; 139°54’ E-147°00’ E
Resolution: 1 km x 1 km, 30 layers in s-coordinate (Max. 1000 m)
Scheme: 3rd-order upwind both momentum & tracers
Biharmonic viscosity & diffusivity; KPP
ROMS (Fukushima)

Domain: 34°54’ N-40°00’ N; 139°54’ E-147°00’ E
Resolution: 1 km x 1 km, 30 layers in s-coordinate (Max. 1000 m)
Scheme: 3rd-order upwind both momentum & tracers
Biharmonic viscosity & diffusivity; KPP

Forcings

Surface boundary
Reanalysis data (5 km x 5 km) using WRF & JMA data
ROMS (Fukushima)

Domain: 34°54’ N-40°00’ N; 139°54’ E-147°00’ E
Resolution: 1 km x 1 km, 30 layers in s-coordinate (Max. 1000 m)
Scheme: 3rd-order upwind both momentum & tracers
 Biharmonic viscosity & diffusivity; KPP

Forcings

Surface boundary
Reanalysis data (5 km x 5 km) using WRF & JMA data

Ocean Interior
JCOPE2 reanalysis data (1/10° x 1/10°) (Miyazawa et al., 2009)
Temp. & Salinity (in the whole domain)
Sea Surface Height & Horizontal Currents (to calculate the lateral boundary condition)
Atmospheric deposition of 137Cs

A 137Cs release scenario to the atmosphere (Terada et al., 2012)
Atmospheric deposition of 137Cs

A 137Cs release scenario to the atmosphere (Terada et al., 2012)

CAMx driven by WRF
Atmospheric deposition of ^{137}Cs

A ^{137}Cs release scenario to the atmosphere (Terada et al., 2012)

The total amount of ^{137}Cs deposited in the ocean: 1.1 PBq
Direct release of ^{137}Cs to the ocean
Direct release of ^{137}Cs to the ocean

Nearest grid point from 1F NPP

$^{137}\text{Cs}_{\text{model}}$

1 Bq sec$^{-1}$

Mar. 26-Apr. 6
Direct release of 137Cs to the ocean

Nearest grid point from 1F NPP

137Cs$_{\text{model}}$

1 Bq sec$^{-1}$

137Cs$_{\text{obs}}$

Mar. 26-Apr. 6

Observed 137Cs activity nearby 1F NPP

Bq m3

Mar. 1

Sep. 1

Mar. 1

2011

2012
Direct release of 137Cs to the ocean

Nearest grid point from 1F NPP

$$1 \text{ Bq sec}^{-1} \times \frac{^{137}\text{Cs}}{^{137}\text{Cs}_{\text{model}}^{}}$$

Mar. 26-Apr. 6

$$f = \frac{^{137}\text{Cs}_{\text{obs}}^{}}{^{137}\text{Cs}_{\text{model}}^{}}$$

Observed 137Cs activity nearby 1F NPP

Bq m$^{-3}$

Mar. 1 2011 Sep. 1 Mar. 1 2012

(a) $^{137}\text{Cs}_{\text{obs}}^{\text{Mar. 26-Apr. 6}}$
Direct release of ^{137}Cs to the ocean

1 Bq sec^{-1}

$^{137}\text{Cs}_{\text{model}}$

Nearest grid point from 1F NPP

Mar. 26-Apr. 6

$\frac{^{137}\text{Cs}_{\text{obs}}}{^{137}\text{Cs}_{\text{model}}}$

Release rate = $f \times 1\text{ Bq sec}^{-1}$

= $2.2 \times 10^{14}\text{ Bq day}^{-1}$
Direct release of 137Cs to the ocean

Nearest grid point from 1F NPP

1 Bq sec^{-1}

$^{137}\text{Cs}_{\text{model}}$

Mar. 26-Apr. 6

$^{137}\text{Cs}_{\text{obs}}$

Release rate $= f \times 1 \text{ Bq sec}^{-1}$

$= 2.2 \times 10^{14} \text{Bq day}^{-1}$

After Apr. 6, we assumed that the 137Cs release rates follow the temporal trend of the observed 137Cs activities nearby 1F NPP.
Direct release of ^{137}Cs to the ocean

Nearest grid point from 1F NPP

$^{137}\text{Cs}_{\text{model}}$

1 Bq sec^{-1}

Mar. 26-Apr. 6

Estimated direct release rates of ^{137}Cs

$$f = \frac{^{137}\text{Cs}_{\text{obs}}}{^{137}\text{Cs}_{\text{model}}}$$

Release rate $= f \times 1 \text{ Bq sec}^{-1}$

$= 2.2 \times 10^{14} \text{Bq day}^{-1}$

After Apr. 6, we assumed that the ^{137}Cs release rates follow the temporal trend of the observed ^{137}Cs activities nearby 1F NPP.
Direct release of 137Cs to the ocean

Estimated direct release rates of 137Cs

Release rate = $f \times 1$ Bq sec$^{-1}$

$= 2.2 \times 10^{14}$ Bq day$^{-1}$

After Apr. 6, we assumed that the 137Cs release rates follow the temporal trend of the observed 137Cs activities nearby 1F NPP.

Total 137Cs activity: 3.6 PBq after 1 yr from the accident
Comparison with Buesseler et al. (2012)

Surface 137Cs activities on **June, 2011**

Control Case
Comparison with Buesseler et al. (2012)

Surface 137Cs activities on June, 2011

Control Case

Direct release only

Bq/m3

- 10^0
- 10^1
- 10^2
- 10^3
Comparison with Buesseler et al. (2012)

Surface 137Cs activities on Dec., 2011
Possible mechanisms transferring ^{137}Cs into sediments
Possible mechanisms transferring 137Cs into sediments
Possible mechanisms transferring ^{137}Cs into sediments

- Particle scavenging
- Adsorption & Desorption
A lab. experiment showed a slow adsorption rate of Cs to marine particulate matters.

<table>
<thead>
<tr>
<th>Elements</th>
<th>Adsorption rate constants (kg⁻¹ day⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs</td>
<td>304</td>
</tr>
<tr>
<td>Fe</td>
<td>25000</td>
</tr>
<tr>
<td>Th</td>
<td>130000</td>
</tr>
</tbody>
</table>

Nyffeler et al. (1984)
Possible mechanisms transferring ^{137}Cs into sediments
Possible mechanisms transferring ^{137}Cs into sediments

- Biological uptake
- Particle scavenging
- Adsorption & Desorption
Possible mechanisms transferring ^{137}Cs into sediments
We developed a sediment model based on Periáñez (2008).

Bottom water (C_{wat})

Dainly mean ^{137}Cs activities in the bottom water (Tsumune et al., 2013)

Sediment (C_{sed})
We developed a sediment model based on Periáñez (2008).

Bottom water \((C_{\text{wat}}) \)

Dainly mean \(^{137}\text{Cs}\) activities in the bottom water (Tsumune et al., 2013)

\[k_1 \]

Sediment \((C_{\text{sed}}) \)
\[k_1 = \chi S = \chi \frac{3L}{RH} \phi (1 - p) \]

(Periáñez, 2008)

- χ exchange velocity 35.0 mm day\(^{-1}\) (Nyffeler et al., 1984)
- S exchange surface
- R sediment radius spatially varying obs. data
- ϕ correction factor 0.01 (Periáñez & Martínez-Aguirre, 1997)
- p sediment porosity 0.6 (Auffret et al., 1974)
- L sediment mixed layer depth
- H thickness of the ocean bottom layer
We developed a sediment model based on Periáñez (2008).

Bottom water \((C_{\text{wat}})\)

Dainly mean \(^{137}\text{Cs}\) activities in the bottom water (Tsumune et al., 2013)

\[k_1 \quad k_2 \]

\[1000 \text{ days} \]

Sediment \((C_{\text{sed}})\)
We developed a sediment model based on Periáñez (2008).

Bottom water (C_{wat})

Dainly mean 137Cs activities in the bottom water (Tsumune et al., 2013)

Sediment (C_{sed})

K_1
K_2
1000 days

λ
30 years
Kusakabe et al. (2013)
Kusakabe et al. (2013)

- Heterogeneous spatial distribution

- May 9-14, 2011
- May 23-27
- June 6-10
- June 20-25
- July 5-9
- July 25-31
- Sep. 7-15
- Oct. 13-26
- Dec. 5-16
- Feb. 4-21, 2012
Kusakabe et al. (2013)

- May 9-14, 2011
- May 23-27
- June 6-10
- June 20-25
- July 5-9
- July 25-31
- Sep. 7-15
- Oct. 13-26
- Dec. 5-16
- Feb. 4-21, 2012

• Heterogeneous spatial distribution
Kusakabe et al. (2013)

• Heterogeneous spatial distribution
• Temporal persistency
Previous obs. studies pointed out factors causing these features.

- **Heterogeneous spatial distribution**

- **Temporal persistency**
Previous obs. studies pointed out factors causing these features.

• **Heterogeneous spatial distribution**
 - Recording history of passing through highly contaminated water (Otosaka & Kobayashi, 2012; Kusakabe et al., 2013)

• **Temporal persistency**
Previous obs. studies pointed out factors causing these features.

• **Heterogeneous spatial distribution**
 - Recording history of passing through highly contaminated water (Otosaka & Kobayashi, 2012; Kusakabe et al., 2013)

 - Spatial distribution of sediment grain size (Otosaka & Kobayashi; Kusakabe et al., 2013)

• **Temporal persistency**
Previous obs. studies pointed out factors causing these features.

- **Heterogeneous spatial distribution**
 - Recording history of passing through highly contaminated water (Otosaka & Kobayashi, 2012; Kusakabe et al., 2013)
 ✓ Simulated 137Cs activities in the bottom waters

- Spatial distribution of sediment grain size (Otosaka & Kobayashi; Kusakabe et al., 2013)
 ✓ Spatially varying obs. data of sediment grain size (R)

- **Temporal persistency**
Previous obs. studies pointed out factors causing these features.

• Heterogeneous spatial distribution
- Recording history of passing through highly contaminated water (Otosaka & Kobayashi, 2012; Kusakabe et al., 2013)
 ✓ Simulated 137Cs activities in the bottom waters
- Spatial distribution of sediment grain size (Otosaka & Kobayashi; Kusakabe et al., 2013)
 ✓ Spatially varying obs. data of sediment grain size (R)

• Temporal persistency
- Almost irreversible adsorption process (Otosaka & Kobayashi, 2012)
Previous obs. studies pointed out factors causing these features.

• Heterogeneous spatial distribution
 - Recording history of passing through highly contaminated water (Otosaka & Kobayashi, 2012; Kusakabe et al., 2013)
 ✓ Simulated 137Cs activities in the bottom waters
 - Spatial distribution of sediment grain size (Otosaka & Kobayashi; Kusakabe et al., 2013)
 ✓ Spatially varying obs. data of sediment grain size (R)

• Temporal persistency
 - Almost irreversible adsorption process (Otosaka & Kobayashi, 2012)
 ✓ A slow desorption rate constant (k_2)
Previous obs. studies pointed out factors causing these features.

- **Heterogeneous spatial distribution**
 - Recording history of passing through highly contaminated water (Otosaka & Kobayashi, 2012; Kusakabe et al., 2013)
 - Simulated 137Cs activities in the bottom waters

- Spatial distribution of sediment grain size (Otosaka & Kobayashi; Kusakabe et al., 2013)
 - Spatially varying obs. data of sediment grain size (R)

- **Temporal persistency**
 - Almost irreversible adsorption process (Otosaka & Kobayashi, 2012)
 - A slow desorption rate constant (k_2)
STN case

- simulate temporal variation of 137Cs in each monitoring station
- validate model outputs
STN case

• simulate temporal variation of 137Cs in each monitoring station
• validate model outputs

EXT case

• simulate spatiotemporal variation of 137Cs allover the domain (extrapolating the obs. data)
• estimate the total amount of 137Cs in sediment off the Fukushima coast
STN case
STN case

[Graph showing various measurements over time for different stations labeled C3, D3, E3, E5, F3, G0, G3, G4, H3, I0, I3, J2, J3, K2, L3, and their respective depths.]
STN case

composite of the results separated by the station depth

Bottom water (Bq m$^{-3}$)
STN case
composite of the results separated by the station depth

< 200 m

Bottom water
(Bq m⁻³)

Sediment
(Bq kg⁻¹)
STN case
composite of the results separated by the station depth

Bottom water (Bq m$^{-3}$)

Sediment (Bq kg$^{-1}$)

< 200 m

> 200 m
STN case
composite of the results separated by the station depth

Bottom water (Bq m⁻³)

Sediment (Bq kg⁻¹)
STN case

comparison of the simulated 137Cs activities in sediments with obs. data
STN case
if we use a homogeneous (mean) sediment radius (R)
EXT case

Mar. 25

Bottom water (Bq m$^{-3}$)

Sediment (Bq kg$^{-1}$)
EXT case

Bottom water (Bq m$^{-3}$)

Sediment (Bq kg$^{-1}$)

Mar. 25

Apr. 10

C$_{wat}$

Bq m$^{-3}$

C$_{sed}$

Bq kg$^{-1}$

39°N

38°N

37°N

36°N

140°E 141°E 142°E 143°E

140°E 141°E 142°E 143°E

1.0×10^{-3}

1.8×10^{-3}

3.2×10^{-3}

5.6×10^{-3}

1.0×10^{-2}

1.8×10^{-2}

3.2×10^{-2}

5.6×10^{-2}

1.0×10^{-1}

1.8×10^{-1}

3.2×10^{-1}

5.6×10^{-1}

1.0×10^{0}

1.8×10^{0}

3.2×10^{0}

5.6×10^{0}

1.0×10^{1}
EXT case

Bottom water (Bq m⁻³)

Sediment (Bq kg⁻¹)
EXT case

Bottom water (Bq m⁻³)

Sediment (Bq kg⁻¹)
EXT case

Estimate of the total inventory of ^{137}Cs off the Fukushima coast (Kusakabe et al., 2013)
EXT case

Estimate of the total inventory of 137Cs off the Fukushima coast
EXT case

Estimate of the total inventory of ^{137}Cs off the Fukushima coast
EXT case

Estimate of the total inventory of ^{137}Cs off the Fukushima coast

The total inventory of ^{137}Cs in sediments off the Fukushima coast is $O(0.1)\text{ PBq}$.
Summary

• Highly contaminated waters (> 10^2 Bq m$^{-3}$) can be explained by the direct release of 137Cs to the ocean.

• The activity level of 137Cs in seawater decreased significantly by one-year after the accident, but that in sediment persisted.

• Spatial pattern of 137Cs in sediment is likely characterized by history of 137Cs in the overlying bottom water and by spatial distribution of sediment grain size.

• The total amount of 137Cs in sediment is estimated to be $O(0.1)$ PBq.
STN case (1-D simulation)