Update on Greenland ice-sheet initialization: Optimal control and Bayesian calibration approaches

M. Eldred1, J. Jakeman1, I. Kalashnikova1, M. Perego1, S. Price2, A. Salinger1, G. Stadler4, L. Swiler1

\textbf{LIWG meeting}, January 30, 2014, Boulder

1Sandia National Laboratories, Albuquerque, NM, USA
2Los Alamos National Laboratory, Los Alamos, NM, USA
3University of Texas, Austin, TX, USA

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Goal: recover initial ice-sheet state and avoid fast initial transients.

How to prescribe ice-sheet mechanical equilibrium:

\[
\frac{\partial H}{\partial t} = -\text{div} (UH) + \tau_s,
\]

\[
U = \frac{1}{H} \int u \, dz.
\]

At equilibrium:

\[
\text{div} (UH) = \tau_s
\]

Boundary condition at ice-bedrock interface:

\[
(\sigma n + \beta u)_{\parallel} = 0 \quad \text{on} \quad \Gamma_{\beta}
\]

Bibliography*:

Arthern, Gudmundsson, J. Glaciology, 2010

Price, Payne, Howat and Smith, PNAS 2011

Morlighem et al. A mass conservation approach for mapping glacier ice thickness, 2013
Deterministic Inversion (w/ S. Price and G. Stadler)
Estimation of ice-sheet initial state

PDE constrained optimization problem

Minimize mismatch between:
- *computed divergence flux* and *measured SMB*
- *computed and measured surface velocity*
- *computed and reference thickness*

Fulfill (Constraint):
- *High order nonlinear Stokes equation*

Tune (Control Variables):
- *Basal friction*
- *Thickness*

Caveat:
- Temperature field is given

\[J(\beta, H) = \frac{1}{2} \int_\Gamma \frac{1}{\sigma_s^2} |\text{div}(UH) - \tau_s|^2 \, ds \quad (J^{SMB}) \]
\[+ \frac{1}{2} \int_{\Gamma_{top}} \frac{1}{\sigma_v^2} |u - u^{obs}|^2 \, ds \quad (J^{vel}) \]
\[+ \frac{1}{2} \int_\Gamma \frac{1}{\sigma_H^2} |H - H^{obs}|^2 \, ds \quad (J^H) \]
\[+ R(\beta) + R(H). \]

Software Tools:
- Assembling: LifeV
- Linear solver: AztecOO & IfPack (Trilinos).
- Nonlinear solver: NOX (Trilinos).
- Gradient Based optimization (LBFGS): Rol.
Consider ISMIP-HOM like forward simulation:

1. Tune \(\beta \) by matching surf. velocity.
2. Tune \(\beta \) by matching surf. vel. and SMB
3. Tune \(\beta \) and thick. by matching surf. vel. and SMB

\[
J^1(\beta) = J^{vel} + R
\]
\[
J^2(\beta) = J^{vel} + J^{SMB} + R
\]
\[
J^3(\beta, H) = J^{vel} + J^{SMB} + J^H + R
\]

Add noise to results of forward simulation to get \(u^{obs}, \tau_s \) and \(H^{obs} \)

Invert. We consider three cases:
Deterministic Inversion (w/ S. Price and G. Stadler)

Numerical results

Slab example. Optimization results using different merit functionals

\[
J^1(\beta) \quad J^2(\beta) \quad J^3(\beta, H)
\]

\[
\beta \quad [kPa \ yr/m]
\]

\[
SMB \quad [m/yr]
\]
Slab example. Optimization results using different merit functionals

\[J^1(\beta) \quad J^2(\beta) \quad J^3(\beta, H) \]

Surf. velocity [m/yr]
RMS error of surface velocity measures [m/yr] (left) and bedrock topography [km] (right).
Deterministic Inversion (w/ S. Price and G. Stadler)

Greenland initialization

Left, Center: Estimated beta obtained using different cost functionals. Right: difference between the computed and reference thickness in [km].
Deterministic Inversion (w/ S. Price and G. Stadler)

Greenland initialization

Left, center: computed surface velocity obtained with different functionals. Right: reference velocity. Units: [m/yr]
Deterministic Inversion (M. Perego, S. Price and G. Stadler)

Greenland initialization

Left, center: Estimated divergence flow obtained using different functionals.
Right: reference SMB.

SMB, [m/yr]
Bayesian Inversion
(w/ M. Eldred, J. Jakeman, I Kalashnikova, A. Salinger, L. Swiler)

Reduction of parameter space dimension

Difficulty in UQ approach: “Curse of dimensionality”. The parameter space has $O(30,000)$ parameters (or more).

- Reduce the dimension of the parameter space.

Method of choice: Karhunen-Loeve Expansion (KLE).
In our experiment, we reduce the dimension of parameter space to 5.

1. Assume analytic covariance kernel $C(r_1, r_2) = \exp\left(-\frac{|r_1 - r_2|^2}{L^2}\right)$.

2. Perform eigenvalue decomposition of C.

3. Take the mean $\bar{\beta}$ to be the deterministic solution and expand β in basis of eigenvector $\{\phi_k\}$ of C, with random variables $\{\xi_k\}$

$$\beta(\omega) = \bar{\beta} + \sum_{k=1}^{K} \sqrt{\lambda_k} \phi_k \xi_k(\omega)$$

*Expansion done on log(β) to avoid negative values for β.

Development(?): parameter reduction based on physical knowledge.
(e.g. include basal hydrology model)
Bayesian Inversion
(w/ M. Eldred, J. Jakeman, I Kalashnikova, A. Salinger, L. Swiler)

Reduction of parameter space dimension: Greenland modes

- 5 KLE modes capture 95% of covariance energy
(parallel C++/Trilinos code Anasazi).

Only spatial correlation has been considered.

Development(?): Build modes using information from the model
(e.g. using family of deterministic basal friction coefficients).
Bayesian Inversion
(w/ M. Eldred, J. Jakeman, I. Kalashnikova, A. Salinger, L. Swiler)

Compute model surrogate and invert

• Mismatch \(\text{(ALBANY)}: \mathcal{J}(\beta) = \frac{1}{2} \int_{\Gamma} \frac{1}{\sigma_s^2} |\text{div}(UH) - SMB|^2 \, ds. \)

• **Build Surrogate Model.** Polynomial chaos expansion (PCE) was formed for the mismatch over random variables using uniform prior distributions. **DAKOTA.**

• **Inversion/Calibration.** Markov Chain Monte Carlo (MCMC) was performed on the PCE with 100K samples **QUESO.**

Development(?): use simple physical model (e.g. \(L1L2 \) or \(SIA \)) as the surrogate model.
Posterior distributions for the 5 KLE coefficients:

MAP solution: $\xi = (-0.16, -0.08, 0, 0, 0)$
Deterministic beta [kPa yr/m]

Bayesian beta [kPa yr/m]

Bayesian Inversion
(w/ M. Eldred, J. Jakeman, I Kalashnikova, A. Salinger, L. Swiler)

Numerical Results