The Lower Thermosphere during the Northern Hemisphere Winter of 2009

Fabrizio Sassi
Naval Research Laboratory – Space Science Division – Washington DC

H.-L. Liu,
National Center for Atmospheric Research – High Altitude Observatory - Boulder (CO)

J. Ma,
Computational Physics Inc – Springfield (VA)

R.R. Garcia
National Center for Atmospheric Research – Atmospheric Chemistry Division – Boulder (CO)
Fraser (1977) found evidence of concurrent 5-day variability in ionospheric scatter and lower stratospheric temperature during various seasons.

Meyer (1999) suggested that planetary-scale waves that survive dissipation may influence the ionosphere.

Liu and Roble (2002) showed that the wintertime variability associated with a SSW can reach into the thermosphere.

Liu et al. (2010) suggest that the presence of quasi-stationary PW in the thermosphere is necessary to couple the high latitudes with the tropical latitudes.
NH 2009 Winter: SSW

• Using WAM, Wang et al. (2011) show that the tidal amplitudes undergo substantial changes at times around the SSW of January 2009: resonant triads.

• Examining ERA-Interim data, Goncharenko et al. (2012) relate the tidal amplitude in the thermosphere with ozone changes in the stratosphere following a SSW.

• Using upper atmosphere data analysis products, McCormack et al. (2010) suggest that phase locking between tides and QTDW is another potential mechanism that can affect tidal amplitudes.
WACCMX-SD

- WACCMX in SD configuration (lid at 3.3×10^{-9} hPa ~ 400 km).
- Data analysis products are obtained merging NASA/MERRA and NRL/NOGAPS-ALPHA.
- Focus period is January-February 2009.
MERRA
16 January 2009

NOGAPS-ALPHA
16 January 2009

HYBRID
16 January 2009

MERRA
24 January 2009

NOGAPS-ALPHA
24 January 2009

HYBRID
24 January 2009

Zonal wind (m/s)
-150.0 -90.0 -30.0 30.0 90.0 150.0
Spectral Analysis
Wave-1/West’d 40N/92 km

Wave-2/West’d 40N/104 km

Wave-3/West’d 60S/100 km

Wave-1/West’d 1N/120 km

Wave-2/West’d 30N/120 km

Wave-3/East’d 1N/120 km

Wave-2/East’d 1N/120 km

Wave-1/East’d 1N/100 km

Wave-3/East’d 1N/120 km
Coherence Analysis:
Spatial Structure
• Symmetric about the EQ
• Amplitude peaks ~110 km
• Vertical wavelength is ~30-40 km
• Amplitude decreases rapidly above 120 km with the phase becoming vertically uniform ➔ external mode.
• Consistent with an ultra-fast Kelvin mode.
- Amplitude peaks in the SH at ~100 km and decreases rapidly above.
- Coherence is nearly global and extends above and below the base point.
- Mode becomes external above 140 km.
- Likely the Rossby-gravity quasi-two day wave.
• These waves correspond to the fundamental Rossby modes at wave-1 and wave-2.
• It is curious that substantial amplitudes seem to emerge from the upper mesosphere.
• Both modes become external above 120 km but (1,1) shows larger amplitude in the summer hemisphere toward 200 km.
• The migrating tides show nearly global coherence.
• Below 120 km: DW1 is mostly equatorially trapped; SW2 is nearly anti-symmetric about the equator.
• Above 140 km both modes become external: DW1 shows increasingly larger amplitude in the summer hemisphere (likely due to EUV heating); SW2 shows increasingly larger amplitude in the winter hemisphere (possibly caused by zonal wind asymmetries).
The non-migrating modes show also nearly global coherence. The amplitudes are small below ~100 km, and peak between 120 and 150 km at the equator. Modes become external above 150 km. Note that the presence of significant amplitude of both the SE2 and DE3 is bound to result in ambiguity of fields plotted as a function of local time.
Temporal Behavior
Comparison to SABER
The presence of high-latitude vacillations at wave-1 and wave-2 in the upper mesosphere has been noted also by Meyer and Forbes (1997) and more recently by Chandran et al. (2013) following the 2012 SSW. These are *transient* planetary-scale, Rossby-like waves that are generated by barotropic/baroclinic instabilities of the zonal circulation.

Tides are very fast waves (~ 460 m s⁻¹) and less likely to be affected *directly* by changing winds in the lower atmosphere.

Tides can, however, be affected *indirectly* by changing winds through changes of the background vorticity: McLandress (2002) documented the inter-seasonal variability of tides in the upper mesosphere and lower thermosphere in a linear tidal model and showed it is controlled by changes of the background vorticity at lower levels.
\[R = \frac{f - U_y}{f} \; ; \; U_y = (U_y)_0 + \Delta U_y \]

\(\Delta U_y = 0 \Rightarrow R_0 \)

\(\Delta U_y > 0 \Rightarrow R < R_0; \; R \text{ decreases} \Rightarrow \text{slower rotation / broad waveguide} \)

\(\Delta U_y < 0 \Rightarrow R > R_0; \; R \text{ increases} \Rightarrow \text{faster rotation / narrow waveguide} \)
\[R = \frac{f - U_y}{f} \]

\[\partial U_y = 0 \implies R_0 \]

\[\partial U_y > 0 \implies R < R_0; \text{ R decreases } \implies \text{ slower rotation / broad waveguide} \]

\[\partial U_y < 0 \implies R > R_0; \text{ R increases } \implies \text{ faster rotation / narrow waveguide} \]
\[R = \frac{(f - U_y)}{f} \]

\[\partial U_y = 0 \Rightarrow R_0 \]

\[\partial U_y > 0 \Rightarrow R < R_0; \text{ R decreases } \Rightarrow \text{ slower rotation / broad waveguide} \]

\[\partial U_y < 0 \Rightarrow R > R_0; \text{ R increases } \Rightarrow \text{ faster rotation / narrow waveguide} \]
Closing remarks

• We have used WACCMX in SD configuration during the focus period January-February 2009.
• Using a combination of NASA/MERRA and NRL/NOGAPS-ALPHA atmospheric specification we have been able to nudge the WACCM meteorology from the ground to ~90 km, providing a realistic background state to study the meteorology that emerges in the lower thermosphere.
• Tides, ultra-fast Kelvin waves and Rossby waves are present with statistically significant amplitude.
• All modes become external (constant phase in height) in the thermosphere, with vanishing amplitude for most above 120-150 km as a result of dissipation due to molecular viscosity. A prominent exception is DW1 which becomes external above ~120 km but its amplitude increases in the thermosphere: this is likely the result of in situ forcing that is latitudinally broad and thus projects on modes with a negative equivalent depth (thus, external).
• Intra-seasonal variability of the tides in the upper mesosphere has been associated with concurrent changes of the background vorticity, as previously shown by McLandress (2002) for the inter-seasonal variations.
• This relationship is less effective at controlling the amplitude of tides at higher levels in the thermosphere.
Acknowledgments

We acknowledge support from NASA/Living with a Star program (grant #NNH12AT21I), and from the Office of Naval Research through 6.1 funding of the ISES project. This work was supported in part by a grant of computer time from the DOD High Performance Computing Modernization Program at the US Navy DoD Supercomputing Resource Center (NAVO).