High Resolution CESM: Coupled Ocean/Ice Simulations using CORE Forcing

Julie McClean, Caroline Papadopoulos and Elena Yulaeva
Scripps Institution of Oceanography

David Bailey
National Center for Atmospheric Science

Mathew Maltrud
Los Alamos National Laboratory

Polar Climate Working Group Meeting
Boulder, Colorado
February 2013

Funding: Office of Science (BER) Department of Energy
Ultra High Resolution Global Climate Simulation to Explore and Quantify Predictive Skill for Climate Means, Variability and Extremes

Kate Evans (ORNL), Mat Maltrud (LANL), Julie McClean (SIO), Caroline Papadopoulos (SIO), Milena Veneziani (LANL), Marcia Branstetter (ORNL), Elena Yulaeva (SIO)

James Hack (ORNL), Phil Jones (LANL), Mark Taylor (SNL)
Bill Collins (LBNL), Dave Bader(LLNL)
Experimental Plan and Status

- Initial state exploration, sensitivity
 - 0.1° forced POP-CICE, 24 years completed. Use for initialization of high resolution preindustrial and present day transient simulations.

- T341 Experiments
 - T341/0.1° POP-CICE preindustrial (CAM4 physics): 43 years completed

- CAM-SE Experiments
 - 0.25°/0.1° POP-CICE preindustrial (CAM4 physics): evaluated against T341.
 - CAM-SE used for all future work, including ensemble of late 20th century/ early 21st century transients

- T85 Comparative Experiments.
 - T85/x1° POP-CICE preindustrial for comparison to “standard” CCSM 4 release
 - Ensemble of late late 20th century/ early 21st century transients to test initialization strategy.
Specific Project Goals

1. Use a suite of 1.0° POP/CICE simulations (gx1v6 grid) in the CESM framework run with CORE2 IAF (1970-2009) to provide guidance for the global 0.1° POP/CICE set-up.

3. Provide restarts from (2) as initial fields for CESM T341 and CAM-SE simulations. Use (2) as a measure of “truth” to validate ocean/ice in fully-coupled CESM.
Delta–Eddington: Multiple Scattering Parameterization for Solar Radiation Transfer in Snow/Ice (Briegleb and Light, 2007)

Parameters:

• dT_{mlt_in} and $rsnw_{mlt_in}$ determine end points of the linear increase in snow grain size during melt.
• dT_{mlt_in}: temperature threshold at which melt begins.
• $Rsnw_{mlt_in}$ is the maximum snow grain radius at 0°C. Range is 10-2500 μm.
• Standard settings are:
 - dT_{mlt_in}=1.5
 - $Rsnw_{mlt_in}$ = 1500 μm
• For CORE2 data atmosphere we are using:
 - dT_{mlt_in}=1
 - $Rsnw_{mlt_in}$ = 1000 μm
 - Delays the melt until -1°C and the snow grains grow to a maximum of 1mm in size.
• The smaller the snow grain radius the higher the albedo.
<table>
<thead>
<tr>
<th>Run: POP-CICE (Gx1v6)</th>
<th>Experiment (all use Delta-Eddington)</th>
<th>Initial Ice</th>
<th>Surface Forcing</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>“Control”</td>
<td>Prescribed initial ice.</td>
<td>CORE IAF</td>
</tr>
<tr>
<td></td>
<td>rsnw_melt_in=1500 dT_melt_in=1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Seasonal cycle adjustments to LWDN and air temp in Arctic in data atm (based on Sheba and Maykut82 data). rsnw_melt_in=1500 dT_melt_in=1.5</td>
<td>Prescribed initial ice.</td>
<td>CORE IAF</td>
</tr>
<tr>
<td>C</td>
<td>rsnw_melt_in=1000 dT_melt_in=1.0</td>
<td>Prescribed initial ice</td>
<td>CORE IAF</td>
</tr>
<tr>
<td>D</td>
<td>Seasonal cycle adjustments to LWDN and air temp in Arctic in data atm. & rsnw_melt_in=1000 dT_melt_in=1.0</td>
<td>Prescribed initial ice</td>
<td>CORE IAF</td>
</tr>
</tbody>
</table>
Ice Thickness (m): POP-CICE gx1v6 for Feb-Mar 1989

ICESAT Feb-Mar 2004-2008

(A) “Control”
(B) Data atm. changes.
(C) D-E changes
(D) Data atm. changes + D-E changes

(A) “Control”
(B) Data atm. changes.
(C) D-E changes
(D) Data atm. changes +D-E changes
Global 0.1° POP/CICE

- CESM framework (1.03/1.04) on Hopper at NERSC.
- Years 1970-1994 to date, will continue through 2009.
- Forcing: CORE2 data atmosphere.
- 0.1° tripole grid for both POP and CICE.
- Sensitivities: initial ocean and ice conditions, NY or IAF forcing
- Solar radiation transfer parameterization for sea-ice/snow was CCSM3 default for 1970-1979 (model spin-up period).
- Switched to D-Edd (dt_mlt_in = 1, and rsnw_mlt_in = 1000) at the end of 1979. This delays the melt until -1°C and the snow grains grow to a maximum of 1mm in size.
- Also changes LWDN and air temperature in CORE2 at end of 1979.
Feb-Mar 1989-1993

0.1° POP/CICE

Oct-Nov 1989-1993

IceSAT

Model-Obs
0.1° POP/CICE

Feb-Mar 1989-1993

Oct-Nov 1989-1993

SSM/I

Model-Obs
Ice Drift (LHS) and Volume Dynamic (upper) and Thermodynamic (lower) Ice Tendencies for Feb-Mar 1989-1993 from 0.1° POP/CICE.
North. Hem. Ice Drift Buoy Data 1990-1993

North. Hem. 0.1° POP/CICE Ice Drifts 1990-1993
Co-located/coincident with buoy data

NH: <80°N

NH: <80°N
Meridional Overturning Circulation (Sv): 0.1° POP/CICE

(b) tx0.1v2: GL. MOC (Sv) YY1989–1993

(d) tx0.1v2: ATL. MOC (Sv) YY1989–1993
Both use D-Edd standard settings.

Both initialized from 0.1° POP/CICE.

Ice Thickness (m)

ne120_f02_t12_B1850a (FM) 0006-0010

Ice Sat (FM) 2001-2005

Ice Thickness (m)

t341f02.B1850dEdd (FM) 0007-0011

Ice Sat (FM) 2001-2005
Ice Concentration (%) for CAM-SE (LHS) and T341 (RHS) CESM Simulations

Black line is 15% concentration contour from SSM/I
Conclusions

• 1° POP/CICE (gx1v6) sensitivity studies using CORE2 IAF show the most realistic Arctic ice thicknesses relative to IceSAT using D-Edd parameters: $dT_{mlt_in}=1$, $Rsnw_{mlt_in} = 1000 \mu m$ and seasonal cycle adjustments to LWDN and air temperature in CORE2.

• In Feb-Mar & Oct-Nov 1989-1993, climatological ice thickness biases in 0.1° POP/CICE are 0.5-1 m too thin to the north of the Canadian Archipelago and in the western Arctic.

• 0.1° POP/CICE has more occurrences of fast ice drifts relative to IABP observations both in the Arctic and south of 80°N. Erroneous export of sea ice via the East Greenland and Labrador Current will result in erroneous freshwater export to the North Atlantic, impacting the AMOC.

• Early results from CAM-SE (CAM4 physics) indicate more realistic Arctic ice distributions and thickness than in T341 (CAM4 physics).