Modeling BGC in the Ice Interior: the CICE release and beyond

Nicole Jeffery, Scott Elliott, and Elizabeth Hunke
Does sea ice physics largely determine which type of algal bloom occurs? And when? And how?
This Talk

- How recent CICE developments help us model biogeochemistry throughout sea ice:
 a) Temperature, Salinity, bottom biogeochemistry
 b) Vertical tracer transport modeling
- Compare and contrast bottom bgc and zbgc
 a) Flux and transport assumptions
 b) Does it matter?
- Conclusions
Recent CICE developments (I)

1) Thermodynamics: mushy layer in addition to B&L99
2) Salinity: mushy layer and scheme for use with B&L99

Provides a dynamic, vertically resolved porosity...

Imaged Sea Ice Structures

Lab-grown sea ice: reconstructions of X-ray CT of 1 cm cores

and critical information for parameterizing brine motion.

Golden et al., 2007

Polar Climate Working Group Meeting 11 – 13 Feb 2013 Boulder, CO.
CICE developments and current work (II)

Bottom Biogeochemistry, aerosols, gas, precipitates…

Dust, BC, Fe

Dust, BC, Fe

Transport

CO₂

Bottom (skeletal) layer

Sea Ice

Methane bubbles

Ocean biogeochemistry

Polar Climate Working Group Meeting 11 – 13 Feb 2013 Boulder, CO.
Recent CICE development (III)

- Vertical tracer transport

During Ice growth

During Ice melt
Modeling ice biochemistry

If we assume that physical properties and processes determine the when/where of an algal bloom…

Some important processes:
1) Flushing (surface and snow melt, meltponds)
2) Gravity drainage (modulate ocean-ice fluxes during ice growth)
3) Snow loading (high snow thickness/ice thickness ratio)

For the Arctic, any model of ice bgc needs a representation of the first two processes.
Bottom (skeletal) Ice Algae - Assumptions

- Skeletal layer thickness and porosity
- Compounds (nitrate, silicate…) are advected between the ice/ocean via a piston velocity (V_p)
- When ice growth dominates, V_p is a function of the growth rate after brine flux measurements of Wakatsuchi & Ono multiplied by a tuning parameter.
- When ice melt dominates, V_p is a function of melt.
Parameterize gravity drainage in ice and between ocean-ice using a diffusivity based on a characteristic velocity and length scale.
Consistent with Piston velocity formulation of the skeletal layer model

A tuning parameter (unknown length scale) is still needed, but it can be determined independently of the biochemistry using the salinity contours.

Data from Wakatsuchi & Ono, 1983

A tuning parameter (unknown length scale) is still needed, but it can be determined independently of the biochemistry using the salinity contours.
For melt...the brine tracer is advected by the Darcy velocity.

1) **Flush**ing — downward flow: low salinity meltwater desalinates ice.
2) **Snow accumulation** — upward flow: ocean water replenishes depleted nutrients.
Does it matter?

Tracers: Algal nitrogen and Nitrate

Column Test Case: 25 days of ice growth and melt with light

- Light and Nitrate can limit growth
- Skeletal biochemistry and Z biochemistry are identical
- Dynamic salinity in both cases
- Ice growth and melt are identical

Differences: Ice-Ocean and Ice bottom-ice interior fluxes
Z-bgc Model: Peak in Algal Nitrogen in the ice bottom
Does it matter? Arctic Scale

Tracers: Algal nitrogen and Nitrate

- Simulations from a 9 year Arctic spinup with salinity
- Biochemistry added Dec 1, 1990
- Nitrate uses Arctic ocean climatology
- Light and Nitrate can limit growth
- Skeletal biochemistry and Z biochemistry are identical
- No additional salinity, light, iron or temperature Inhibition.
May Chla
Summary

- Tracer transport portion of zbgc scheduled for release but not with biochemistry.
- Works with any salinity model or prescription, but works better with more realistic salinity profiles.

- Representation of ice-ocean fluxes can radically change algal production estimates.
- In zbgc, the gravity drainage strength is tuned independently from the biochemistry. Could help constrain the fluxes in bottom bgc.