Carbon Isotopes in the iCESM

Alexandra Jahn

Collaborators: Keith Lindsay, Mike Levy, Esther Brady, Synte Peacock, Bette Otto-Bliesner

NCAR is sponsored by the National Science Foundation
The iCESM project is funded by DOE
Carbon Isotopes and their usefulness

Stable isotopes become preferentially concentrated because of differences in their mass: this is called fractionation.

→ It allows the tracing of pathways/origins of carbon.

^{12}C
- 6 protons
- 6 neutrons
- (stable)

^{13}C
- 6 protons
- 7 neutrons
- (stable)

^{14}C
- 6 protons
- 8 neutrons
- (radioactive)

^{14}C acts as clock

^{14}C goes through β-minus decay, releasing an electron and an antineutrino, with a half-life of 5730 years.

Stable isotopes become preferentially concentrated because of differences in their mass: this is called fractionation.

→ It allows the tracing of pathways/origins of carbon.
Fractionation

- **Equilibrium Fractionation**: The heavier isotope generally preferentially accumulates in the element in which it is bound most strongly.

- **Kinetic Fractionation**: The lighter isotopes react more readily and become concentrated in the products, and the residual reactants become enriched in the heavy isotopes. Biological processes (e.g., photosynthesis) are kinetic reactions.
Delta Values

- Measured isotope ratios are expressed as delta (δ) values, calculated relative to a known standard.

\[
\delta(\text{‰}) = \frac{(R_{\text{sample}} - R_{\text{standard}})}{R_{\text{standard}}} \times 1000
\]

where R is the measured isotopic ratio (e.g., 13C/12C).
Examples of $\Delta^{14}C$ as ocean tracer

- $\Delta^{14}C$ is used as proxy for the age of water masses, circulation timescales, and to infer past and present ocean water ages.
- Bomb $\Delta^{14}C$ is used to infer recent ocean ventilation (like CFCs) and oceanic carbon uptake.

$\Delta^{14}C = $ Activity ratio relative to a standard
Examples of $\delta^{13}C$ as ocean tracer

- $\delta^{13}C$ is used to infer paleo ocean water masses (e.g., NADW)
- $\delta^{13}C$ can be used as tracers of carbon cycle processes → e.g., used to diagnose the oceanic uptake of anthropogenic CO$_2$

Curry and Oppo (2005)
Carbon isotopes in POP2

1. Abiotic 14C in DIC in POP2 (solubility pump only)
 → follow OCMIP2 protocol

2. Biotic 14C and 13C in POP2 (solubility and biological pump)
 → base code on 13C code from ETH (Gruber et al) for POP1
 → Add biotic 14C

Oceanic abiotic 14C tracer module

- **Atmosphere**
- **Surface gas exchange fluxes**
 - Surface water fluxes (e.g., runoff, evaporation, etc)
- **Ocean (POP2)**
 - Advection of passive tracers DIC and DIC14 (done by existing POP2)
 - Decay of 14C to 14N
- **Sea ice**
Model Corals

14C ages and ideal ages in the model

Average surface 14C age = 366 years
14C ages and ideal ages in the model

Average surface 14C age = 366 years

14C age

Ideal Age

Surface-corrected 14C age
Adding the biological pump

Currently there are 7 carbon pools in the ecosystem model (DIC, DOC, small phytoplankton, diatoms, diazotrophs, zooplankton, CaCO₃)

Each Carbon isotope adds 7 tracers
- Currently the ecosystem model has 24 tracers
- 14 additional carbon isotopes add a considerable expense (>50% increase in number of tracers)
→ Carbon isotopes need to be an optional feature

“Complete” = Include both biological effects and solubility effects
Addition of biotic 13C and 14C to POP2

Diagram showing the integration of various modules and components:

- **passive_tracers**
- **CFC_mod**
- **IAGE_mod**
- **ecosys_driver**
- **abio_14C_mod**
- **wiso_mod**
- **ecosys_mod**
- **ecosys_Ciso_mod**
- **ecosys_Th_Pa_mod**
- **ecosys_Niso_mod**

Diagram notes:

- **(sharing of data)**
- **(future extensions)**
Future work

+ Finish addition of 13C and 14C and test implementation
 + How large is the difference for 14C between the abiotic module and the “complete” 14C module?

+ Add tracers for Protactinium (Pa) and Thorium (Th) to the ecosystem model of the CESM as additional tracer for the strength of the overturning circulation

+ Spin-up all tracers for use in the the 1 degree coupled CESM \rightarrow need fast spin-up technique (Keith Lindsay, NCAR)

+ Include tracers in iTraCE simulation for LGM to present
 + Compare simulations to observations, using the new tracers for more direct (but still not “apple to apple”) comparisons
 + Investigate how the physical climate parameters from the model (temperature, density, etc) relate to the simulated geochemical tracer fields
Thanks!

Contact: ajahn@ucar.edu