Measurements and Modeling of Contemporary Carbon-14 Levels in the Stratosphere to Constrain Stratospheric Dynamics & the Global Carbon Cycle

A. M. Kanu¹,³, L. L. Comfort¹, T. P. Guilderson², P. J. Cameron-Smith³, D. J. Bergmann³, E. L. Atlas⁴, S. Schauffler⁵, K. A. Boering⁶

1. Department of Chemistry, University of California, Berkeley
2. Center for Accelerator Mass Spectrometry, LLNL
3. Atmospheric, Earth, and Energy Division, LLNL
4. Division of Marine and Atmospheric Chemistry, University of Miami
5. Atmospheric Chemistry Division, NCAR
6. Department of Earth and Planetary Science, University of California
$^{14}\text{CO}_2$ as a Tracer in the Stratosphere

<table>
<thead>
<tr>
<th>Altitude (km)</th>
<th>12</th>
<th>25</th>
<th>38</th>
<th>50</th>
<th>62</th>
</tr>
</thead>
</table>

$^{14}_7\text{N} + ^1_0\text{n} \rightarrow ^{14}_6\text{C} \rightarrow ^{14}\text{CO}_2 \sim 15-33\text{km}$

Ft. Sumner, NM (34°N)

Background is ^7Be production from Koch & Rind 1998

Balloon Sampling
Fall 2003, 2004, & 2005

Accelerator Mass Spectrometry (LLNL CAMS)
Model Setup

- IMPACT: LLNL chemistry transport model,
- 1960-2006 simulations,
 - (many e-fold times needed for spinup),
- 3 different GCM metadata.
- 3 tracers:
 - 14C-trop (historical surface concentrations),
 - 14C-strat (cosmogenic prod. in strat; zero in trop),
 - N$_2$O (historical surface concentrations + strat loss).
Model vertical profiles generally match obs.

- Deviations from model could be described by transport from other latitudes.
- Model vertical profiles generally match obs.
- Note N_2O annual increase is small.
- Path of chemical loss is longer than from ^{14}C production.
N2O relation to 14C seems to be captured, except 2005 (signature of different transport?).
\(\Delta^{14}\text{CO}_2 \) (per mil) vs. \(\text{N}_2\text{O} \) (ppbv)

- \(\text{MACCM3} \ 34^\circ\text{N} \ (2004) \)
- \(\text{FVCCM} \ 34^\circ\text{N} \ (2004) \)
- \(\text{FVDAS} \ 34^\circ\text{N} \ (2004) \)

- Fall 2003 Obs
- Fall 2004 Obs
- Fall 2005 Obs

- \(\text{N}_2\text{O} \) relation to \(^{14}\text{C} \) seems to be captured by different metadata corresponding to an extreme stratospheric circulation year.
Conclusions

- IMPACT model seems to give reasonable simulation.
- 14C observations give additional information about stratospheric dynamics.
- Results will help constrain natural 14C production rate, with implications for carbon cycle studies.

Future

- Run with assimilated (observed) meteorology.
- Run with solar-cycle effect on 14C production.
The End
Archived CO₂ Samples at UCB: Spatial (5S-88N) and Temporal (1996-2007) Distribution
$^{14}\text{CO}_2$ is a Fossil Fuel CO$_2$ Tracer

- Atmospheric CO$_2$, $\Delta^{13}\text{C}$, and $\Delta^{14}\text{C}$ as reconstructed in tree-rings and ice cores for the pre-atmospheric weapons testing. The decrease in $\Delta^{14}\text{C}$ and $\Delta^{13}\text{C}$ is caused by the burning of fossil fuels.
- Present day atmospheric $^{14}\text{CO}_2$ has returned to near “pre-bomb” levels.
Carbon Cycle Partitioning of Bomb 14C
