Dimensionality Reduction and Global Sensitivity Analysis for the Community Land Model

C. Safta1, K. Sargsyan1, D. Ricciuto2, B. Debusschere1, H.N. Najm1, P. Thornton2

1Sandia National Laboratories
Livermore, CA, USA

2Oak Ridge National Laboratory
Oak Ridge, TN, USA

The Winter CESM Uncertainty Quantification and Analysis Interest Group Meeting
NCAR Mesa Lab, Boulder CO
February 20-21, 2013
Acknowledgement

This work was supported by the US Department of Energy, Office of Science, under the project “Climate Science for a Sustainable Energy Future”, funded by the Biological and Environmental Research (BER) program.

This is a continuation of a presentation by Khachik Sargsyan in the UQA meeting (“Surrogate construction via Bayesian compressive sensing for the Community Land Model”)

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
Outline

1. Challenges
2. Surrogate Models
 - Polynomial Chaos Expansions
 - Constrained Parameter Space
3. Iterative Bayesian Compressive Sensing (iBCS)
 - Methodology
 - BCS+Classification
4. Community Land Model results
5. Summary
UQ Challenges in Climate Models

- Computationally expensive model simulations
- High-dimensional input parameter space
 - Physical constraints and dependencies for some input parameters
 - Uncertainties in the input parameters are not known
- Non-linear dependence of output quantities of interest on inputs
Community Land Model

http://www.cesm.ucar.edu/models/clm/

- Nested computational grid hierarchy
- Represents spatial heterogeneity of the land surface
- A single-site, 1000-yr simulation takes \(\sim 10 \) hrs on 1 CPU
- Involves \(\sim 70 \) input parameters
Generate initial conditions → several spin-up stages

- total soil organic matter carbon \([gC/m^2] \) \((TOTSOMC)\)
Community Land Model - Typical Setup (2)

- Sample the parameter space

- Left frame: Contour plot of time-averaged TOTSOMC values for a range of $(r_{\text{mort}}, f_{\text{root_leaf}})$ values
- Right frame: Time evolution of TOTSOMC for select $(r_{\text{mort}}, f_{\text{root_leaf}})$ values
Surrogate Models

What are surrogate models?

- Input parameter vector λ
- Computationally expensive model $f(\cdot)$ (e.g. CLM)
- Given a set of training model runs, $(\lambda_i, f(\lambda_i))_{i=1}^{N}$, a surrogate $f_s(\cdot) \approx f(\cdot)$ is a model that is cheap to evaluate and appropriately represents the underlying detailed, expensive model over a specified range of input parameters.

Why do we need surrogate models?

- Global sensitivity analysis
- Input parameter inference
- Optimization
- Forward uncertainty propagation
To build a surrogate representation for input-output relationship, Polynomial Chaos (PC) spectral expansions are used; see Ghanem and Spanos (1991).

- Interprets input parameters as random variables
- Allows propagation of input parameter uncertainties to outputs of interest
- Serves as a computationally inexpensive surrogate for calibration or optimization
Polynomial Chaos Representations

Input parameters are represented via their cumulative distribution function (CDF) $F(\cdot)$, such that, with $\eta_i \sim \text{Uniform}[-1, 1]$, we have:

$$\lambda_i = F^{-1}_{\lambda_i} \left(\frac{\eta_i + 1}{2} \right), \quad \text{for } i = 1, 2, \ldots, d.$$

If input parameters are uniform $\lambda_i \sim \text{Uniform}[a_i, b_i]$, then

$$\lambda_i = \frac{a_i + b_i}{2} + \frac{b_i - a_i}{2} \eta_i.$$

Output is represented with respect to Legendre polynomials

$$f(\lambda(\eta)) \approx y(\eta) \equiv \sum_{k=0}^{K} c_k \Psi_k(\eta).$$
Map Constrained Parameters to Unconstrained Spaces

- Given a vector of random variables $\lambda = (\lambda_1, \ldots, \lambda_d')$ with known joint cumulative distribution function (CDF) $F(\lambda_1, \ldots, \lambda_d')$
- Use Rosenblatt transformation (RT) to obtain a map $\eta = R(\lambda)$ to a set of η_i’s that are independent uniform random variables on $[-1, 1]$.

\[
\begin{align*}
\lambda_{18} &< \lambda_{22}, \\
\lambda_{30} + \lambda_{31} + \lambda_{32} &= 1, \\
\lambda_{33} + \lambda_{34} + \lambda_{35} &= 1.
\end{align*}
\]
Bayesian Inference of Polynomial Chaos modes

Bayesian inference of PC modes allows surrogate construction with uncertainties associated with limited sampling

- Bayes formula
 \[p(c|D) \propto L_D(c)p(c) \]
 relates the prior distribution \(p(c) \) of PC modes to the posterior \(p(c|D) \), where the data \(D \) is the set of all training runs \(D = (\lambda_i, f(\lambda_i))_{i=1}^N \).

- The likelihood accounts for the discrepancy between the simulation data and the surrogate model (Sargsyan et al 2011),
 \[L_D(c) \propto \exp \left(- \sum_{i=1}^N \frac{(f(\lambda_i) - yc(\eta_i))^2}{2\sigma^2} \right) \]
The number of polynomial basis terms grows fast; a p-th order, d-dimensional basis has a total of $(p + d)!/(p!d!)$ terms.

Dimensionality reduction by using hierarchical priors.

$$p(c | s_k^2) \propto \prod_{k=0}^{K} \exp \left(-\frac{c_k^2}{2s_k^2} \right) \quad p(s_k^2 | \alpha) = \frac{\alpha}{2} \exp \left(-\frac{\alpha s_k^2}{2} \right)$$

The parameter α can be further modeled hierarchically, or fixed.

The parameters $(\sigma^2, s_0^2, \ldots, s_K^2)$ are fixed by evidence maximization, and bases corresponding to small s_i^2 are discarded (Ji et al. 2008, Babacan et al., 2010).

Iterative BCS: We implement an iterative procedure that allows increasing the order for the relevant basis terms while maintaining the dimensionality reduction (Sargsyan et al. 2011, 2012).
Climate Land Model - Single site mode for Niwot Ridge

- $N = 10,000$ training runs based on uniformly LHS distributed parameter values.
- Outputs: steady-state, 10-year averages of 7 quantities

iBCS for one observable

<table>
<thead>
<tr>
<th>Name</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTVEGC</td>
<td>gC/m2</td>
<td>Total vegetation carbon</td>
</tr>
<tr>
<td>TOTSOMC</td>
<td>gC/m2</td>
<td>Total soil carbon</td>
</tr>
<tr>
<td>GPP</td>
<td>gC/m2/s</td>
<td>Gross primary production</td>
</tr>
<tr>
<td>ERR</td>
<td>W/m2</td>
<td>Energy conservation error</td>
</tr>
<tr>
<td>TLAI</td>
<td>none</td>
<td>Total leaf area index</td>
</tr>
<tr>
<td>EFLX_LH_TOT</td>
<td>W/m2</td>
<td>Total latent heat flux</td>
</tr>
<tr>
<td>FSH</td>
<td>W/m2</td>
<td>Sensible heat flux</td>
</tr>
</tbody>
</table>
Classify Parameter Space

- Large regions of the original quasi-hypercube parameter space lead to simulations with failed vegetation.

- Partition the space using a classification algorithm
 - Classification using Random Decision Forests implemented in the AlgLib software library (http://www.alglib.net)
 - the result is the mode of the results from individual decision trees

- Calibration using 9K samples/Validation using 1K samples
- Shift accuracy from “failed vegetation” plateau to “active vegetation” regions
- Apply the iBCS algorithm on “active vegetation” results
Classification+iBCS

- Clustering/classification-based piecewise Polynomial Chaos construction to accommodate non-smooth transition between dead and live vegetation regions

- Classification errors are approximately 10-15%

- Posterior predictive distribution of the surrogate model output covers the spread of simulation data
Climate Land Model - Global Sensitivity Analysis

- Ranking of the most influential input parameters for each output of interest

\[S_i = \frac{\sum_{k \in I} c_k^2 \| \Psi_k \|^2}{\sum_{k > 0} c_k^2 \| \Psi_k \|^2} \]

<table>
<thead>
<tr>
<th>rank</th>
<th>TOTVEGC</th>
<th>TOTSOMC</th>
<th>GPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>r_mort</td>
<td>q10_mr</td>
<td>leafcn</td>
</tr>
<tr>
<td>2</td>
<td>q10_mr</td>
<td>leafcn</td>
<td>k_s4</td>
</tr>
<tr>
<td>3</td>
<td>froot_leaf</td>
<td>froot_leaf</td>
<td>froot_leaf</td>
</tr>
<tr>
<td>4</td>
<td>br_mr</td>
<td>br_mr</td>
<td>flnr</td>
</tr>
<tr>
<td>5</td>
<td>q10_hr</td>
<td>flnr</td>
<td>q10_mr</td>
</tr>
<tr>
<td>6</td>
<td>leafcn</td>
<td>dnp</td>
<td>q10_hr</td>
</tr>
<tr>
<td>7</td>
<td>k_s4</td>
<td>q10_hr</td>
<td>dnp</td>
</tr>
<tr>
<td>8</td>
<td>stem_leaf</td>
<td>leaf_long</td>
<td>rf_s3s4</td>
</tr>
<tr>
<td>9</td>
<td>flnr</td>
<td>k_s4</td>
<td>leaf_long</td>
</tr>
<tr>
<td>10</td>
<td>dnp</td>
<td>frootcn</td>
<td>br_mr</td>
</tr>
</tbody>
</table>
Climate Land Model - Global Sensitivity Analysis

- Most influential input parameter couplings for each output - energy contained in each parameter pair
- Results below correspond to Leaf Area Index (LAI)

\[S_{ij} = \frac{\sum_{k \in \Pi_{ij}} c_k^2 \| \Psi_k \|^2}{\sum_{k > 0} c_k^2 \| \Psi_k \|^2} \]

- Blue discs sizes are proportional to \(S_i \)
- Thickness of green lines is proportional to \(S_{ij} \)
Most influential input parameter couplings for each output - energy contained in each parameter pair

TOTVEGC

GPP
Sensitivity indices used to discard unimportant parameters

Combine analysis for several outputs of interest, \{TOTVEGC, LAI, ER, GPP\}, to arrive to a reduced input parameter space.
Summary

Sensitivity analysis for complex, expensive, climate models is enabled by cheap surrogate models

- Polynomial Chaos surrogate model is constructed using Bayesian techniques
- Constrained/dependent input parameters are mapped to an unconstrained input set via Rosenblatt transformation
- High-dimensionality is tackled by iterative Bayesian compressive sensing algorithm
- Classification for efficient domain decomposition to relieve the non-linear effects

Future plans include running CLM ensembles on lower-dimensional parameter spaces.
- Goal is to increase predictive fidelity of the CLM surrogate, for reliable parameter calibration.